1. Induced Disease Models Products
  2. Endocrine and Metabolic Disease Models
  3. Diabetes Models High Uric Acid Models
  4. Fructose

Fructose is a simple ketonic monosaccharide found in many plants, where it is often bonded to glucose to form the disaccharide sucrose.

For research use only. We do not sell to patients.

Fructose Chemical Structure

Fructose Chemical Structure

CAS No. : 7660-25-5

Size Price Stock Quantity
Free Sample (0.1 - 0.5 mg)   Apply Now  
Solid + Solvent
10 mM * 1 mL in DMSO
ready for reconstitution
USD 55 In-stock
Solution
10 mM * 1 mL in DMSO USD 55 In-stock
Solid
500 mg USD 50 In-stock
1 g USD 60 In-stock
5 g USD 84 In-stock
10 g   Get quote  
50 g   Get quote  

* Please select Quantity before adding items.

This product is a controlled substance and not for sale in your territory.

Customer Review

Based on 1 publication(s) in Google Scholar

Top Publications Citing Use of Products

1 Publications Citing Use of MCE Fructose

  • Biological Activity

  • Protocol

  • Purity & Documentation

  • References

  • Customer Review

Description

Fructose is a simple ketonic monosaccharide found in many plants, where it is often bonded to glucose to form the disaccharide sucrose.

In Vitro

Fructose, at low concentrations do not cause any significant increase of Tissue factor (TF)-mRNA levels. On the contrary, higher Fructose concentrations cause increase in TF mRNA levels at 60 min, as compare to unstimulated cells. Increasing Fructose concentrations causes significant decrease of tPA-mRNA levels. SOD significantly prevents Fructose induced NF-κB activation which is associated with the parallel reduction of Fructose-induced TF expression/activity[1].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Fructose can be used in animal modeling to construct models of hyperuricemia and diabetes in rats.

In mice fed 0% Fructose, portal (0.060±0.006 mM, overall mean for all time points) and systemic (0.030±0.003 mM) Fructose concentrations do not vary with time after feeding. In contrast, portal concentrations in wild-type mice consuming 20% Fructose increase by more than twofold from time (t)=0 to t=1 h after feeding (~0.13 mM). Likewise, systemic serum Fructose goes from 0.037 at t=0 to 0.13 mM 1 h after feeding. Fasted (t=0) serum Fructose in the 20% group is similar to postprandial concentrations in the 0% mice for both portal and systemic levels, suggesting that the baseline Fructose concentration during fasting is not affected by diet. Serum Fructose concentrations in KHK-/- mice are 5- to 100-fold greater than those in wild-type mice for the same diet, time, and sample location. Mean (for all time points) portal and systemic glucose concentrations in mice fed 20% Fructose are ~3 (P=0.004) and ~2 (P=0.04) mM greater, respectively, than those in mice fed 0%. Systemic Fructose concentrations are approximately threefold greater in KHK-/- mice fed Fructose compare with those fed glucose, but are similar between glucose- and Fructose-fed wild-type mice[2].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Clinical Trial
Molecular Weight

180.16

Formula

C6H12O6

CAS No.
Appearance

Solid

Color

White to off-white

SMILES

O[C@H]1[C@@H](O)[C@H](O)[C@@](O)(CO)OC1

Structure Classification
Initial Source
Shipping

Room temperature in continental US; may vary elsewhere.

Storage
Powder -20°C 3 years
4°C 2 years
In solvent -80°C 2 years
-20°C 1 year
Solvent & Solubility
In Vitro: 

H2O : 100 mg/mL (555.06 mM; Need ultrasonic)

DMSO : ≥ 100 mg/mL (555.06 mM; Hygroscopic DMSO has a significant impact on the solubility of product, please use newly opened DMSO)

*"≥" means soluble, but saturation unknown.

Preparing
Stock Solutions
Concentration Solvent Mass 1 mg 5 mg 10 mg
1 mM 5.5506 mL 27.7531 mL 55.5062 mL
5 mM 1.1101 mL 5.5506 mL 11.1012 mL
View the Complete Stock Solution Preparation Table

* Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
Storage method and period of stock solution: -80°C, 2 years; -20°C, 1 year. When stored at -80°C, please use it within 2 years. When stored at -20°C, please use it within 1 year.

* Note: If you choose water as the stock solution, please dilute it to the working solution, then filter and sterilize it with a 0.22 μm filter before use.

  • Molarity Calculator

  • Dilution Calculator

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass
=
Concentration
×
Volume
×
Molecular Weight *

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start)

C1

×
Volume (start)

V1

=
Concentration (final)

C2

×
Volume (final)

V2

In Vivo:

Select the appropriate dissolution method based on your experimental animal and administration route.

For the following dissolution methods, please ensure to first prepare a clear stock solution using an In Vitro approach and then sequentially add co-solvents:
To ensure reliable experimental results, the clarified stock solution can be appropriately stored based on storage conditions. As for the working solution for in vivo experiments, it is recommended to prepare freshly and use it on the same day.
The percentages shown for the solvents indicate their volumetric ratio in the final prepared solution. If precipitation or phase separation occurs during preparation, heat and/or sonication can be used to aid dissolution.

  • Protocol 1

    Add each solvent one by one:  10% DMSO    40% PEG300    5% Tween-80    45% Saline

    Solubility: ≥ 2.5 mg/mL (13.88 mM); Clear solution

    This protocol yields a clear solution of ≥ 2.5 mg/mL (saturation unknown).

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (25.0 mg/mL) to 400 μL PEG300, and mix evenly; then add 50 μL Tween-80 and mix evenly; then add 450 μL Saline to adjust the volume to 1 mL.

    Preparation of Saline: Dissolve 0.9 g sodium chloride in ddH₂O and dilute to 100 mL to obtain a clear Saline solution.
  • Protocol 2

    Add each solvent one by one:  10% DMSO    90% (20% SBE-β-CD in Saline)

    Solubility: ≥ 2.5 mg/mL (13.88 mM); Clear solution

    This protocol yields a clear solution of ≥ 2.5 mg/mL (saturation unknown).

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (25.0 mg/mL) to 900 μL 20% SBE-β-CD in Saline, and mix evenly.

    Preparation of 20% SBE-β-CD in Saline (4°C, storage for one week): 2 g SBE-β-CD powder is dissolved in 10 mL Saline, completely dissolve until clear.

For the following dissolution methods, please prepare the working solution directly. It is recommended to prepare fresh solutions and use them promptly within a short period of time.
The percentages shown for the solvents indicate their volumetric ratio in the final prepared solution. If precipitation or phase separation occurs during preparation, heat and/or sonication can be used to aid dissolution.

  • Protocol 1

    Add each solvent one by one:  PBS

    Solubility: 100 mg/mL (555.06 mM); Clear solution; Need ultrasonic

In Vivo Dissolution Calculator
Please enter the basic information of animal experiments:

Dosage

mg/kg

Animal weight
(per animal)

g

Dosing volume
(per animal)

μL

Number of animals

Recommended: Prepare an additional quantity of animals to account for potential losses during experiments.
Calculation results:
Working solution concentration: mg/mL
This product has good water solubility, please refer to the measured solubility data in water/PBS/Saline for details.
The concentration of the stock solution you require exceeds the measured solubility. The following solution is for reference only.If necessary, please contact MedChemExpress (MCE).
Purity & Documentation

Purity: ≥98.0%

References
Cell Assay
[1]

HUVECs are incubated with Fructose (0.25, 1 and 2.5 mM) for 30 min. Then, cells are washed with PBS and then fresh medium is added. Total mRNA is extracted by cell cultures using TRIzol reagent, at baseline and 60 min after Fructose stimulation and Tissue factor (TF) mRNA levels are examined by realtime reverse transcription (RT) and polymerase chain reaction (PCR). In positive control experiments, HUVECs are incubated with LPS (50 μg/mL), for 30 min and then mRNA is extracted at 60 min[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration
[2]

50 young adult (7-wk-old) male C57BL6 wild-type mice (~18 g) are divided into 10 cages and acclimatized to a reversed light cycle. Mice are fed a nonpurified commercial diet ad libitum for the first 4 days. On the 5th day and then throughout the experiment, diets are removed at 2001 (lights on) and returned at 0801 (lights off). For days 8 to 14, diets are switched to pellets containing either 0% Fructose, 10% sucrose, 20% glucose (termed as "0% Fructose") or 20% Fructose, 10% sucrose, or 0% glucose (20% Fructose). On the 15th day, mice are killed at 0800 before feeding and 0900, 1030, 1200, and 1530 during the dark phase, with n=5 for each time point and diet[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

References

Complete Stock Solution Preparation Table

* Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
Storage method and period of stock solution: -80°C, 2 years; -20°C, 1 year. When stored at -80°C, please use it within 2 years. When stored at -20°C, please use it within 1 year.

Optional Solvent Concentration Solvent Mass 1 mg 5 mg 10 mg 25 mg
H2O / DMSO 1 mM 5.5506 mL 27.7531 mL 55.5062 mL 138.7655 mL
5 mM 1.1101 mL 5.5506 mL 11.1012 mL 27.7531 mL
10 mM 0.5551 mL 2.7753 mL 5.5506 mL 13.8766 mL
15 mM 0.3700 mL 1.8502 mL 3.7004 mL 9.2510 mL
20 mM 0.2775 mL 1.3877 mL 2.7753 mL 6.9383 mL
25 mM 0.2220 mL 1.1101 mL 2.2202 mL 5.5506 mL
30 mM 0.1850 mL 0.9251 mL 1.8502 mL 4.6255 mL
40 mM 0.1388 mL 0.6938 mL 1.3877 mL 3.4691 mL
50 mM 0.1110 mL 0.5551 mL 1.1101 mL 2.7753 mL
60 mM 0.0925 mL 0.4626 mL 0.9251 mL 2.3128 mL
80 mM 0.0694 mL 0.3469 mL 0.6938 mL 1.7346 mL
100 mM 0.0555 mL 0.2775 mL 0.5551 mL 1.3877 mL

* Note: If you choose water as the stock solution, please dilute it to the working solution, then filter and sterilize it with a 0.22 μm filter before use.

  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.
Help & FAQs
  • Do most proteins show cross-species activity?

    Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product Name

 

Salutation

Applicant Name *

 

Email Address *

Phone Number *

 

Organization Name *

Department *

 

Requested quantity *

Country or Region *

     

Remarks

Bulk Inquiry

Inquiry Information

Product Name:
Fructose
Cat. No.:
HY-N0395
Quantity:
MCE Japan Authorized Agent: