1. Academic Validation
  2. Cardiac ion channel current modulation by the CFTR inhibitor GlyH-101

Cardiac ion channel current modulation by the CFTR inhibitor GlyH-101

  • Biochem Biophys Res Commun. 2011 Apr 29;408(1):12-7. doi: 10.1016/j.bbrc.2011.03.089.
Palash P Barman 1 Stéphanie C M Choisy Hanne C Gadeberg Jules C Hancox Andrew F James
Affiliations

Affiliation

  • 1 Cardiovascular Research Laboratories, School of Physiology and Pharmacology and Bristol Heart Institute, University of Bristol, Bristol BS8 1TD, UK.
Abstract

The role in the heart of the cardiac isoform of the cystic fibrosis transmembrane conductance regulator (CFTR), which underlies a protein kinase A-dependent Cl(-) current (I(Cl.PKA)) in cardiomyocytes, remains unclear. The identification of a CFTR-selective inhibitor would provide an important tool for the investigation of the contribution of CFTR to cardiac electrophysiology. GlyH-101 is a glycine hydrazide that has recently been shown to block CFTR channels but its effects on cardiomyocytes are unknown. Here the action of GlyH-101 on cardiac I(Cl.PKA) and on other ion currents has been established. Whole-cell patch-clamp recordings were made from rabbit isolated ventricular myocytes. GlyH-101 blocked I(Cl.PKA) in a concentration- and voltage-dependent fashion (IC(50) at +100 mV=0.3 ± 1.5 μM and at -100 mV=5.1 ± 1.3 μM). Woodhull analysis suggested that GlyH-101 blocks the open pore of cardiac CFTR channels at an electrical distance of 0.15 ± 0.03 from the external membrane surface. A concentration of GlyH-101 maximally effective against I(Cl.PKA) (30 μM) was tested on other cardiac ion currents. Inward current at -120 mV, comprised predominantly of the inward-rectifier background K(+) current, I(K1), was reduced by ∼43% (n=5). Under selective recording conditions, the Na(+) current (I(Na)) was markedly inhibited by GlyH-101 over the entire voltage range (with a fractional block at -40 mV of ∼82%; n=8). GlyH-101 also produced a voltage-dependent inhibition of L-type Ca(2+) channel current (I(Ca,L)); fractional block at +10 mV of ∼49% and of ∼28% at -10 mV; n=11, with a ∼-3 mV shift in the voltage-dependence of I(Ca,L) activation. Thus, this study demonstrates for the first time that GlyH-101 blocks cardiac I(Cl.PKA) channels in a similar fashion to that reported for recombinant CFTR. However, inhibition of other cardiac conductances may limit its use as a CFTR-selective blocker in the heart.

Figures
Products