1. Academic Validation
  2. Preclinical Testing of Nalfurafine as an Opioid-sparing Adjuvant that Potentiates Analgesia by the Mu Opioid Receptor-targeting Agonist Morphine

Preclinical Testing of Nalfurafine as an Opioid-sparing Adjuvant that Potentiates Analgesia by the Mu Opioid Receptor-targeting Agonist Morphine

  • J Pharmacol Exp Ther. 2019 Nov;371(2):487-499. doi: 10.1124/jpet.118.255661.
Shane W Kaski 1 Allison N White 1 Joshua D Gross 1 Kristen R Trexler 1 Kim Wix 1 Aubrie A Harland 1 Thomas E Prisinzano 1 Jeffrey Aubé 1 Steven G Kinsey 1 Terry Kenakin 1 David P Siderovski 1 Vincent Setola 2
Affiliations

Affiliations

  • 1 Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.).
  • 2 Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.) [email protected].
Abstract

Mu Opioid Receptor (MOR)-targeting analgesics are efficacious pain treatments, but notorious for their abuse potential. In preclinical animal models, coadministration of traditional kappa Opioid Receptor (KOR)-targeting agonists with MOR-targeting analgesics can decrease reward and potentiate analgesia. However, traditional KOR-targeting agonists are well known for inducing antitherapeutic side effects (psychotomimesis, depression, anxiety, dysphoria). Recent data suggest that some functionally selective, or biased, KOR-targeting agonists might retain the therapeutic effects of KOR activation without inducing undesirable side effects. Nalfurafine, used safely in Japan since 2009 for uremic pruritus, is one such functionally selective KOR-targeting agonist. Here, we quantify the bias of nalfurafine and several other KOR agonists relative to an unbiased reference standard (U50,488) and show that nalfurafine and EOM-salvinorin-B demonstrate marked G protein-signaling bias. While nalfurafine (0.015 mg/kg) and EOM-salvinorin-B (1 mg/kg) produced spinal antinociception equivalent to 5 mg/kg U50,488, only nalfurafine significantly enhanced the supraspinal analgesic effect of 5 mg/kg morphine. In addition, 0.015 mg/kg nalfurafine did not produce significant conditioned place aversion, yet retained the ability to reduce morphine-induced conditioned place preference in C57BL/6J mice. Nalfurafine and EOM-salvinorin-B each produced robust inhibition of both spontaneous and morphine-stimulated locomotor behavior, suggesting a persistence of sedative effects when coadministered with morphine. Taken together, these findings suggest that nalfurafine produces analgesic augmentation, while also reducing opioid-induced reward with less risk of dysphoria. Thus, adjuvant administration of G protein-biased KOR agonists like nalfurafine may be beneficial in enhancing the therapeutic potential of MOR-targeting analgesics, such as morphine.

Figures