1. Search Result
Search Result
Pathways Recommended: Autophagy
Targets Recommended: Autophagy Mitochondrial Metabolism Mitophagy AUTAC
Results for "

Mitochondrial Autophagy

" in MCE Product Catalog:

22

Inhibitors & Agonists

8

Natural
Products

1

Isotope-Labeled Compounds

Cat. No. Product Name Target Research Areas
  • HY-15206
    Glibenclamide

    Glyburide

    Potassium Channel Mitochondrial Metabolism Autophagy CFTR P-glycoprotein Metabolic Disease
    Glibenclamide (Glyburide) is an orally active ATP-sensitive K + channel (KATP) inhibitor and can be used for the research of diabetes and obesity. Glibenclamide inhibits P-glycoprotein. Glibenclamide directly binds and blocks the SUR1 subunits of KATP and inhibits the cystic fibrosis transmembrane conductance regulator protein (CFTR). Glibenclamide interferes with mitochondrial bioenergetics by inducing changes on membrane ion permeability. Glibenclamide can induce autophagy.
  • HY-17471A
    Metformin hydrochloride

    1,1-Dimethylbiguanide hydrochloride

    AMPK Autophagy Mitophagy Metabolic Disease Cardiovascular Disease
    Metformin hydrochloride (1,1-Dimethylbiguanide hydrochloride) inhibits the mitochondrial respiratory chain in the liver, leading to activation of AMPK, enhancing insulin sensitivity for type 2 diabetes research. Metformin hydrochloride triggers autophagy.
  • HY-110228
    Metformin D6 hydrochloride

    1,1-Dimethylbiguanide D6 hydrochloride

    AMPK Autophagy Mitophagy Metabolic Disease Cardiovascular Disease
    Metformin D6 hydrochloride is a deuterium labeled Metformin hydrochloride. Metformin hydrochloride inhibits the mitochondrial respiratory chain in the liver, leading to activation of AMPK, enhancing insulin sensitivity for type 2 diabetes research. Metformin hydrochloride triggers autophagy.
  • HY-B0627
    Metformin

    1,1-Dimethylbiguanide

    AMPK Autophagy Mitophagy Cancer Metabolic Disease Cardiovascular Disease
    Metformin (1,1-Dimethylbiguanide) inhibits the mitochondrial respiratory chain in the liver, leading to activation of AMPK, enhancing insulin sensitivity for type 2 diabetes research. Metformin can cross the blood-brain barrier and triggers autophagy.
  • HY-124726
    Aumitin

    Autophagy Cancer Neurological Disease
    Aumitin is a diaminopyrimidine-based autophagy inhibitor which inhibits mitochondrial respiration by targeting complex I. Aumitin inhibits starvation- and rapamycin induced autophagy dose dependently with IC50s of 0.12 μM and 0.24 μM, respectively.
  • HY-134640
    AUTAC4

    AUTAC Mitophagy Cancer Neurological Disease
    AUTAC4 is a mitochondria-targeting autophagy-targeting chimera (AUTAC). AUTAC4 downregulates cytosolic proteins and promotes targeted mitochondrial turnover via mitophagy.
  • HY-N6779
    Patulin

    Terinin

    Bacterial Apoptosis Autophagy Antibiotic Infection
    Patulin (Terinin) is a mycotoxin produced by fungi including the Aspergillus, Penicillium, and Byssochlamys species, is suspected to be clastogenic, mutagenic, teratogenic and cytotoxic. Patulin induces autophagy-dependent apoptosis through lysosomal-mitochondrial axis, and causes DNA damage.
  • HY-12406
    VLX600

    Mitochondrial Metabolism Autophagy Cancer
    VLX600 is an iron-chelating inhibitor of oxidative phosphorylation (OXPHOS). VLX600 causes mitochondrial dysfunction and induces a strong shift to glycolysis. VLX600 displays selective cytotoxic activity against malignant cell and induces autophagy. Anticancer activity.
  • HY-B0497C
    Niclosamide olamine

    BAY2353 olamine

    STAT Parasite Antibiotic Autophagy Cancer Infection
    Niclosamide olamine (BAY2353 olamine) is an anthelmintic that disrupts mitochondrial metabolism in parasitic worms and animal models. Niclosamide olamine inhibits STAT3 (IC50 = 0.25 μM) and stimulates autophagy by reversibly inhibiting mammalian target of Rapamycin complex 1 (mTORC1) signaling.
  • HY-134656
    BC1618

    AMPK Mitophagy E1/E2/E3 Enzyme Metabolic Disease Inflammation/Immunology
    BC1618, an orally active Fbxo48 inhibitory compound, stimulates Ampk-dependent signaling (via preventing activated pAmpkα from Fbxo48-mediated degradation). BC1618 promotes mitochondrial fission, facilitates autophagy and improves hepatic insulin sensitivity.
  • HY-N4113
    Glycycoumarin

    Autophagy Cancer
    Glycycoumarin is a major bioactive coumarin of licorice. Glycycoumarin inhibits hepatocyte lipoapoptosis through activation of autophagy and inhibition of ER stress-mediated JNK and GSK-3-mediated mitochondrial pathway. Glycycoumarin exerts anti-liver cancer activity by directly targeting T-LAK cell-originated protein kinase .
  • HY-B0116
    Stavudine

    d4T

    Reverse Transcriptase HIV Nucleoside Antimetabolite/Analog NOD-like Receptor (NLR) Autophagy Apoptosis Infection
    Stavudine (d4T) is an orally active nucleoside reverse transcriptase inhibitor (NRTI). Stavudine has activity against HIV-1 and HIV-2. Stavudine also inhibits the replication of mitochondrial DNA (mtDNA). Stavudine reduces NLRP3 inflammasome activation and modulates Amyloid-β autophagy. Stavudine induces apoptosis.
  • HY-B0116A
    Stavudine sodium

    d4T sodium

    Reverse Transcriptase HIV Nucleoside Antimetabolite/Analog NOD-like Receptor (NLR) Autophagy Apoptosis Infection
    Stavudine (d4T) sodium is an orally active nucleoside reverse transcriptase inhibitor (NRTI). Stavudine sodium has activity against HIV-1 and HIV-2. Stavudine sodium also inhibits the replication of mitochondrial DNA (mtDNA). Stavudine sodium reduces NLRP3 inflammasome activation and modulates Amyloid-β autophagy. Stavudine sodium induces apoptosis.
  • HY-100490B
    Rilmenidine phosphate

    Imidazoline Receptor Adrenergic Receptor Apoptosis Autophagy Cancer Cardiovascular Disease
    Rilmenidine phosphate, an innovative antihypertensive agent, is an orally active, selective I1 imidazoline receptor agonist. Rilmenidine phosphate is an alpha 2-adrenoceptor agonist. Rilmenidine phosphate induces autophagy. Rilmenidine phosphate acts both centrally by reducing sympathetic overactivity and in the kidney by inhibiting the Na +/H + antiport. Rilmenidine phosphate modulates proliferation and stimulates the proapoptotic protein Bax thus inducing the perturbation of the mitochondrial pathway and apoptosis in human leukemic K562 cells .
  • HY-N2959
    Brevilin A

    JAK STAT Apoptosis Autophagy Cancer
    Brevilin A is a sesquiterpene lactone isolated from Centipeda minima with anti-tumor activity. Brevilin A is a selective inhibitor of JAK-STAT signal pathway by attenuating the JAKs activity and blocking STAT3 signaling (IC50 = 10.6 µM) in Cancer Cells. Brevilin A induces apoptosis and autophagy via mitochondrial pathway and PI3K/AKT/mTOR inactivation in colon adenocarcinoma cell CT26.
  • HY-W016409
    Ethyl 3,4-dihydroxybenzoate

    Ethyl protocatechuate

    HIF/HIF Prolyl-Hydroxylase Reactive Oxygen Species NO Synthase Autophagy Apoptosis Cancer Metabolic Disease
    Ethyl 3,4-dihydroxybenzoate (Ethyl protocatechuate), an antioxidant, is a prolyl-hydroxylase inhibitor found in the testa of peanut seeds. Ethyl 3,4-dihydroxybenzoate protects myocardium by activating NO synthase and generating mitochondrial ROS. Ethyl 3,4-dihydroxybenzoate induces cell autophagy and apoptosis in ESCC cells. Ethyl 3,4-dihydroxybenzoate is a collagen synthesis inhibitor and has a bone protecting-effect.
  • HY-100490
    Rilmenidine

    Imidazoline Receptor Adrenergic Receptor Apoptosis Autophagy Cancer Cardiovascular Disease
    Rilmenidine, an innovative antihypertensive agent, is an orally active, selective I1 imidazoline receptor agonist. Rilmenidine is an alpha 2-adrenoceptor agonist. Rilmenidine induces autophagy. Rilmenidine acts both centrally by reducing sympathetic overactivity and in the kidney by inhibiting the Na +/H + antiport. Rilmenidine modulates proliferation and stimulates the proapoptotic protein Bax thus inducing the perturbation of the mitochondrial pathway and apoptosis in human leukemic K562 cells.
  • HY-15597
    Salinomycin

    Procoxacin

    Bacterial Wnt β-catenin Mitophagy Autophagy Apoptosis Antibiotic Cancer
    Salinomycin (Procoxacin), a polyether potassium ionophore antibiotic, selectively inhibits the growth of gram-positive bacteria. Salinomycin is a potent inhibitor of Wnt/β-catenin signaling, blocks Wnt-induced LRP6 phosphorylation. Salinomycin (Procoxacin) shows selective activity against human cancer stem cells.
  • HY-N0484
    Liensinine

    Autophagy Mitophagy Apoptosis Cancer Cardiovascular Disease
    Liensinine is an autophagy/mitophagy inhibitor. Liensinine, a major isoquinoline alkaloid, extracted from the seed embryo of Nelumbo nucifera Gaertn, has a wide range of biological activities, including anti-arrhythmias, anti-hypertension, anti-pulmonary fibrosis, relaxation on vascular smooth muscle, etc.
  • HY-100490A
    Rilmenidine hemifumarate

    Imidazoline Receptor Adrenergic Receptor Apoptosis Autophagy Cancer Cardiovascular Disease
    Rilmenidine hemifumarate, an innovative antihypertensive agent, is an orally active, selective I1 imidazoline receptor agonist. Rilmenidine hemifumarate is an alpha 2-adrenoceptor agonist. Rilmenidine hemifumarate induces autophagy. Rilmenidine hemifumarate acts both centrally by reducing sympathetic overactivity and in the kidney by inhibiting the Na +/H + antiport. Rilmenidine hemifumarate modulates proliferation and stimulates the proapoptotic protein Bax thus inducing the perturbation of the mitochondrial pathway and apoptosis in human leukemic K562 cells .
  • HY-18980
    Rottlerin

    Mallotoxin; NSC 56346; NSC 94525

    PKC Autophagy Apoptosis HIV Infection Cancer
    Rottlerin, a natural product purified from Mallotus Philippinensis, is a specific PKC inhibitor, with IC50 values for PKCδ of 3-6 μM, PKCα,β,γ of 30-42 μM, PKCε,η,ζ of 80-100 μM. Rottlerin acts as a direct mitochondrial uncoupler, and stimulates autophagy by targeting a signaling cascade upstream of mTORC1. Rottlerin induces apoptosis via caspase 3 activation. Rottlerin inhibits HIV-1 integration and Rabies virus (RABV) infection.
  • HY-N3584
    Paris saponin VII

    Chonglou Saponin VII

    Akt p38 MAPK P-glycoprotein Bcl-2 Family Caspase PARP Autophagy Apoptosis Cancer
    Paris saponin VII (Chonglou Saponin VII) is a steroidal saponin isolated from the roots and rhizomes of Trillium tschonoskii Maxim. Paris saponin VII-induced apoptosis in K562/ADR cells is associated with Akt/MAPK and the inhibition of P-gp. Paris saponin VII attenuates mitochondrial membrane potential, increases the expression of apoptosis-related proteins, such as Bax and cytochrome c, and decreases the protein expression levels of Bcl-2, caspase-9, caspase-3, PARP-1, and p-Akt. Paris saponin VII induces a robust autophagy in K562/ADR cells and provides a biochemical basis in the treatment of leukemia.