1. Search Result
Search Result
Results for "

phosphoethanolamine

" in MedChemExpress (MCE) Product Catalog:

56

Inhibitors & Agonists

1

Fluorescent Dye

40

Biochemical Assay Reagents

3

Natural
Products

2

Recombinant Proteins

4

Isotope-Labeled Compounds

Cat. No. Product Name Target Research Areas Chemical Structure
  • HY-W040268

    Endogenous Metabolite Metabolic Disease
    1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine is an endogenous metabolite.
    1,2-Dipalmitoyl-sn-glycero-3-<em>phosphoethanolamine</em>
  • HY-W040268S

    Isotope-Labeled Compounds Endogenous Metabolite Metabolic Disease
    1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine-d62 is deuterium labeled 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine. 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine is an endogenous metabolite.
    1,2-Dipalmitoyl-sn-glycero-3-<em>phosphoethanolamine</em>-d62
  • HY-146798S

    Isotope-Labeled Compounds Others
    1-Pentadecanoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine-d7 is deuterium labeled 1-Pentadecanoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine.
    1-Pentadecanoyl-2-oleoyl-sn-glycero-3-<em>phosphoethanolamine</em>-d7
  • HY-147071

    DAPE

    Others Metabolic Disease
    1,2-Diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE) is a phospholipid phosphatidylethanolamine. Unlike other phospholipid phosphatidylethanolamines, 1,2-Diarachidonoyl-sn-glycero-3-phosphoethanolamine has no significant effect on protein phosphatase PP2A activity and does not inhibit insulin-stimulated GLUT4 translocation .
    1,2-Diarachidonoyl-sn-glycero-3-<em>phosphoethanolamine</em>
  • HY-W322225

    DLPE; 1,2-Dilauroyl-sn-glycero-3-PE

    Liposome Others
    1,2-Dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE) is a derivative of phosphatidylethanolamine with lauric acid (12:0) acyl chains. 1,2-Dilauroyl-sn-glycero-3-phosphoethanolamine can be used as liposomes .
    1,2-Dilauroyl-sn-glycero-3-<em>phosphoethanolamine</em>
  • HY-157586

    Lysophosphatidylethanolamine C18:2

    Others Others
    2-Linoleoyl-sn-glycero-3-phosphoethanolamine (Lysophosphatidylethanolamine C18:2) is a kind of lipid metabolite, that can be used as biomarkers .
    2-Linoleoyl-sn-glycero-3-<em>phosphoethanolamine</em>
  • HY-W355700

    Drug Metabolite Infection
    1-Oleoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine is the main degradation product of deltamethrin metabolized by the prokaryotic protein (CYP6A14 and CYP6N6) complexes in vitro .
    1-Oleoyl-2-hydroxy-sn-glycero-3-<em>phosphoethanolamine</em>
  • HY-W127368

    L-α-Phosphatidylethanolamine, β-linoleoyl-γ-palmitoyl

    Biochemical Assay Reagents Others
    2-Linoleoyl-1-palmitoyl-sn-glycero-3-phosphoethanolamine is a biochemical reagent that can be used as a biological material or organic compound for life science related research.
    2-Linoleoyl-1-palmitoyl-sn-glycero-3-<em>phosphoethanolamine</em>
  • HY-112530

    DSPE

    Liposome Endogenous Metabolite Metabolic Disease
    1,2-Distearoyl-sn-glycero-3-phosphorylethanolamine (DSPE) is a phosphoethanolamine (PE) lipid that can be used in the synthesis of liposomes .
    1,2-Distearoyl-sn-glycero-3-phosphorylethanolamine
  • HY-145780

    Cholinesterase (ChE) Others
    Cytidine 5′-diphosphoethanolamine is an intermediate compound in the synthesis of phosphatidylethanolamine. Cytidine 5′-diphosphoethanolamine is a stimulant of Ach synthesis .
    Cytidine 5′-diphosphoethanolamine
  • HY-160274

    Fluorescent Dye Others
    DSPE-PEG-Fluor 555,MW 2000 is a PEG lipid conjugate with a DSPE group and a Fluor 555 dye. DSPE is a phosphoethanolamine (PE) lipid that can be used in the synthesis of liposomes. And Fluor 555 is a fluorescent dye .
    DSPE-PEG-Fluor 555,MW 2000
  • HY-160271

    Fluorescent Dye Others
    DSPE-CH2-PEG-Fluor 488,MW 2000 is a PEG lipid conjugate with a DSPE group and a Fluor 488 dye. DSPE is a phosphoethanolamine (PE) lipid that can be used in the synthesis of liposomes. And Fluor 488 is a fluorescent dye .
    DSPE-CH2-PEG-Fluor 488,MW 2000
  • HY-N5034
    Phosphorylethanolamine
    2 Publications Verification

    Monoaminoethyl phosphate; NSC 254167; O-phosphoethanolamine

    Endogenous Metabolite Metabolic Disease Cancer
    Phosphorylethanolamine (Monoaminoethyl phosphate) is present in most animal tissues and is also present in various human extracranial tumors. Phosphorylethanolamine is considered as the intermediate product of phospholipid metabolism. Phosphorylethanolamine is essential for the formation and maintenance of the cell membrane .
    Phosphorylethanolamine
  • HY-112005

    dioleoylphosphatidylethanolamine; 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine

    Liposome Endogenous Metabolite Inflammation/Immunology
    DOPE (dioleoylphosphatidylethanolamine) is a neutral helper lipid for cationic liposome and combines with cationic phospholipids to improve transfection efficiency of naked siRNA .
    DOPE
  • HY-142983

    Dimyristoylphosphatidylethanolamine; 1,2-Ditetradecyl-rac-glycero-3-phosphoethanolamine

    Liposome Others
    DMPE is the dimyristoylphosphatidylcholine. DMPE is a liposome used to deliver agents .
    DMPE
  • HY-112530S

    DSPE-d70

    Isotope-Labeled Compounds Endogenous Metabolite Metabolic Disease
    1,2-Distearoyl-sn-glycero-3-phosphorylethanolamine-d70 is deuterium labeled 1,2-Distearoyl-sn-glycero-3-phosphorylethanolamine. 1,2-Distearoyl-sn-glycero-3-phosphorylethanolamine (DSPE) is a phosphoethanolamine (PE) lipid that can be used in the synthesis
    1,2-Distearoyl-sn-glycero-3-phosphorylethanolamine-d70
  • HY-D1602

    Fluorescent Dye Others
    BODIPY FL DHPE is a green-fluorescent phospholipid probe. BODIPY FL DHPE labels lipid 1,2-dihexadecanoyl-sn-glycero-phosphoethanolamine (DHPE), labeled liposomes can be internalized by membrane fusion. BODIPY FL DHPE can be used for investigations of membrane surface and membrane fusion. (λex=505 nm, λem=511 nm) .
    BODIPY FL-DHPE
  • HY-N5034R

    Monoaminoethyl phosphate (Standard); NSC 254167 (Standard); O-phosphoethanolamine (Standard)

    Endogenous Metabolite Metabolic Disease Cancer
    Phosphorylethanolamine (Standard) is the analytical standard of Phosphorylethanolamine. This product is intended for research and analytical applications. Phosphorylethanolamine (Monoaminoethyl phosphate) is present in most animal tissues and is also present in various human extracranial tumors. Phosphorylethanolamine is considered as the intermediate product of phospholipid metabolism. Phosphorylethanolamine is essential for the formation and maintenance of the cell membrane .
    Phosphorylethanolamine (Standard)
  • HY-155887

    DSPE-PEG-NH2, MW 3400 ammonium

    Liposome Others
    DSPE-PEG-Amine, MW 3400 (ammonium) is a phosphoethanolamine involved in the synthesis of liposomes for delivery systems. The amino group of DSPE-PEG-Amine, MW 3400 (ammonium) can be converted to aromatic aldehydes by reacting with acetone-protected aromatic hydrazines on the surface of bovine carbonic anhydrase (BCA) molecules. Liposomes form a liposome-BAH-BCA conjugate by forming a bisarylhydrazone (BAH) with the target enzyme molecule. The conjugate catalyzes the hydration of carbon dioxide to bicarbonate.
    DSPE-PEG-<em>Amine</em>, MW 3400 ammonium
  • HY-155908

    DSPE-PEG-NH2, MW 10000 ammonium

    Liposome Others
    DSPE-PEG-Amine, MW 10000 (ammonium) is a phosphoethanolamine involved in the synthesis of liposomes for delivery systems. The amino group of DSPE-PEG-Amine, MW 10000 (ammonium) can be converted into aromatic aldehydes by reacting with acetone-protected aromatic hydrazines on the surface of bovine carbonic anhydrase (BCA) molecules. Liposomes form a liposome-BAH-BCA conjugate by forming a bisarylhydrazone (BAH) with the target enzyme molecule. The conjugate catalyzes the hydration of carbon dioxide to bicarbonate.
    DSPE-PEG-<em>Amine</em>, MW 10000 ammonium
  • HY-155907

    DSPE-PEG-NH2, MW 5000 ammonium

    Liposome Others
    DSPE-PEG-Amine, MW 5000 (ammonium) is a phosphoethanolamine involved in the synthesis of liposomes for delivery systems. DSPE-PEG-Amine, MW 5000 (ammonium) amino group can be converted to aromatic aldehydes that react with acetone-protected aromatic hydrazides on the surface of the bovine carbonic anhydrase (BCA) molecule. Liposomes produce liposome-Bah-BCA conjugates by forming diaryl hydrazone (BAH) with target enzyme molecules. The conjugate catalyzes the hydration of carbon dioxide to bicarbonate.
    DSPE-PEG-<em>Amine</em>, MW 5000 ammonium
  • HY-W440823A

    DSPE-PEG-NH2, MW 1000 ammonium

    Liposome Others
    DSPE-PEG-Amine, MW 1000 (ammonium) is a phosphoethanolamine involved in the synthesis of liposomes for delivery systems. The amino group of DSPE-PEG-Amine, MW 1000 (ammonium) can be converted to an aromatic aldehyde, which reacts with an acetone-protected aromatic hydrazine on the surface of the bovine carbonic anhydrase (BCA) molecule. Liposomes form a liposome-BAH-BCA conjugate by forming a bisarylhydrazone (BAH) with the target enzyme molecule. The conjugate catalyzes the hydration of carbon dioxide to bicarbonate.
    DSPE-PEG-<em>Amine</em>, MW 1000 ammonium
  • HY-143203

    1-Stearoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine

    Biochemical Assay Reagents Others
    18:0-18:2 PE is a lipid for agents delivering. 18:0-18:2 PE is mainly composed of unsaturated fatty acids. 18:0-18:2 is considered important precursors of important odorants (IOs) in Eriocheir sinensis .
    18:0-18:2 PE
  • HY-141617

    1-Palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine

    Others Metabolic Disease
    1-Palmitoyl-2-hydroxy-sn-glycero-3-PE is a lysophospholipid acyl acceptor. 1-Palmitoyl-2-hydroxy-sn-glycero-3-PE is used as a structure-related lipid control .
    1-Palmitoyl-2-hydroxy-sn-glycero-3-PE
  • HY-112760
    18:0 mPEG2000 PE sodium
    1 Publications Verification

    DSPE-mPEG2000 sodium; 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] sodium

    Liposome Cancer
    18:0 mPEG2000 PE sodium can be used for the preparation of stabilized nucleic acid-lipid particllipid particles (SNALPs). SNALPs represent some of the earliest and best functional siRNA-ABC nanoparticles described .
    18:0 mPEG2000 PE sodium
  • HY-142978

    DSPE-mPEG2000; 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]

    Liposome Cancer
    18:0 mPEG2000 PE (DSPE-mPEG2000) is a PEG-based phospholipid. 18:0 mPEG2000 PE can be used to synthesis liposomes for delivering cancer agents .
    18:0 mPEG2000 PE
  • HY-144010

    DOPE-PEG2000; 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] ammonium

    Liposome Others
    18:1 PEG2000 PE (18:1 PEG-PE) is a polyethyleneglycol/phosphatidyl-ethanolamine conjugate. 18:1 PEG2000 PE can be used for drug delivery .
    18:1 PEG2000 PE
  • HY-144012

    DPPE-PEG2000; 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] ammonium

    Liposome Others
    16:0 PEG2000 PE (DPPE-PEG2000) is a PEG-modified lipids. 16:0 PEG2000 PE can reduce the nonspecific adsorption of protein and prolong circulation time in vivo .
    16:0 PEG2000 PE
  • HY-144006

    DMPE-PEG2000; 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] ammonium

    Liposome Others
    14:0 PEG2000 PE (DMPE-PEG2000) is a PEG-phospholipid conjugate to prepare nanostructured lipid carrier .
    14:0 PEG2000 PE
  • HY-N5034S

    Monoaminoethyl phosphate-d4; NSC 254167-d4; O-phosphoethanolamine-d4

    Isotope-Labeled Compounds Metabolic Disease
    Phosphorylethanolamine-d4 (Monoaminoethyl phosphate-d4; NSC 254167-d4) is a deuterium labeled Phosphorylethanolamine (HY-N5034). Phosphorylethanolamine is an endogenous metabolite.
    Phosphorylethanolamine-d4
  • HY-144012A

    DPPE-PEG350; 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-350] ammonium

    Liposome Others
    16:0 PEG350 PE is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
    16:0 PEG350 PE
  • HY-144012B

    DPPE-PEG550; 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-550] ammonium

    Biochemical Assay Reagents Liposome Others
    16:0 PEG550 PE is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
    16:0 PEG550 PE
  • HY-144012C

    DPPE-PEG750; 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-750] ammonium

    Biochemical Assay Reagents Liposome Others
    16:0 PEG750 PE is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
    16:0 PEG750 PE
  • HY-144012D

    DPPE-PEG1000; 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-1000] ammonium

    Liposome Others
    16:0 PEG1000 PE is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
    16:0 PEG1000 PE
  • HY-144012E

    DPPE-PEG3000; 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-3000] ammonium

    Liposome Others
    16:0 PEG3000 PE is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
    16:0 PEG3000 PE
  • HY-144012H

    DPPE-PEG5000; 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-5000] ammonium

    Liposome Others
    16:0 PEG5000 PE is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
    16:0 PEG5000 PE
  • HY-155924

    DMPE-PEG350; 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-350] ammonium

    Liposome Others
    14:0 PEG350 PE is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
    14:0 PEG350 PE
  • HY-155925

    DMPE-PEG550; 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-550] ammonium

    Liposome Others
    14:0 PEG550 PE is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymeric nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
    14:0 PEG550 PE
  • HY-155926

    DMPE-PEG750; 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-750] ammonium

    Liposome Others
    14:0 PEG750 PE is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymeric nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
    14:0 PEG750 PE
  • HY-155927

    DMPE-PEG1000; 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-1000] ammonium

    Liposome Others
    14:0 PEG1000 PE is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
    14:0 PEG1000 PE
  • HY-155928

    DMPE-PEG3000; 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-3000] ammonium

    Liposome Others
    14:0 PEG3000 PE is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
    14:0 PEG3000 PE
  • HY-155929

    DMPE-PEG5000; 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-5000] ammonium

    Liposome Others
    14:0 PEG5000 PE is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
    14:0 PEG5000 PE
  • HY-155930

    DOPE-PEG350; 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-350] ammonium

    Liposome Others
    18:1 PEG350 PE is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
    18:1 PEG350 PE
  • HY-155931

    DOPE-PEG550; 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-550] ammonium

    Liposome Others
    18:1 PEG550 PE is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
    18:1 PEG550 PE
  • HY-155932

    DOPE-PEG1000; 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-1000] ammonium

    Liposome Others
    18:1 PEG1000 PE is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
    18:1 PEG1000 PE
  • HY-155933

    DOPE-PEG3000; 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-3000] ammonium

    Liposome Others
    18:1 PEG3000 PE is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
    18:1 PEG3000 PE
  • HY-155934

    DOPE-PEG5000; 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-5000] ammonium

    Liposome Others
    18:1 PEG5000 PE is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
    18:1 PEG5000 PE
  • HY-144013

    DSPE-mPEG2000 ammonium; 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] ammonium

    Liposome Others
    18:0 mPEG2000 PE (DSPE-mPEG2000) ammonium is a polyethyleneglycol/phosphatidyl-ethanolamine conjugate. 18:0 mPEG2000 PE ammonium can be used for drug delivery .
    18:0 mPEG2000 PE ammonium
  • HY-144004
    DSPE-PEG2000-Mal ammonium
    1 Publications Verification

    DSPE-PEG2000 Maleimide ammonium; 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] ammonium

    Liposome Others
    DSPE-PEG-Maleimide has DSPE phospholipid and maleimide to prepare nanostructured lipid carrier. DSPE-PEG-Maleimide extends blood circulation time and higher stability for encapsulated agents .
    DSPE-PEG2000-Mal ammonium
  • HY-144013A

    DSPE-mPEG350 ammonium; 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-350] ammonium

    Liposome Others
    18:0 mPEG350 PE (ammonium) is a PEG lipid functional end group used in the synthesis of liposomes (LPs) for the design of conjugated polymer nanoparticles. Through biotin modification and carboxyl terminus, lipid nanoparticles (LNPs) further coupling with other biomolecules can be achieved. Functionalized nanoparticles can be used for targeted labeling of specific cellular proteins. With streptavidin as a linker, biotinylated PEG lipid-conjugated polymer nanoparticles are able to bind to biotinylated antibodies on cell surface receptors, yielding the utility of fluorescence-based imaging and sensing.
    18:0 mPEG350 PE ammonium

Inquiry Online

Your information is safe with us. * Required Fields.

Salutation

 

Country or Region *

Applicant Name *

 

Organization Name *

Department *

     

Email Address *

 

Product Name *

Cat. No.

 

Requested quantity *

Phone Number *

     

Remarks

Inquiry Online

Inquiry Information

Product Name:
Cat. No.:
Quantity:
MCE Japan Authorized Agent: