1. Academic Validation
  2. Phosphatidylinositol 4-kinase IIIbeta regulates the transport of ceramide between the endoplasmic reticulum and Golgi

Phosphatidylinositol 4-kinase IIIbeta regulates the transport of ceramide between the endoplasmic reticulum and Golgi

  • J Biol Chem. 2006 Nov 24;281(47):36369-77. doi: 10.1074/jbc.M604935200.
Balázs Tóth 1 András Balla Hui Ma Zachary A Knight Kevan M Shokat Tamas Balla
Affiliations

Affiliation

  • 1 Section on Molecular Signal Transduction, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA.
Abstract

The recently identified ceramide transfer protein, CERT, is responsible for the bulk of ceramide transport from the endoplasmic reticulum (ER) to the Golgi. CERT has a C-terminal START domain for ceramide binding and an N-terminal pleck-strin homology domain that binds phosphatidylinositol 4-phosphate suggesting that phosphatidylinositol (PI) 4-kinases are involved in the regulation of CERT-mediated ceramide transport. In the present study fluorescent analogues were used to follow the ER to Golgi transport of ceramide to determine which of the four mammalian PI 4-kinases are involved in this process. Overexpression of pleckstrin homology domains that bind phosphatidylinositol 4-phosphate strongly inhibited the transport of C5-BODIPY-ceramide to the Golgi. A newly identified PI 3-kinase inhibitor, PIK93 that selectively inhibits the type III PI 4-kinase beta Enzyme, and small interfering RNA-mediated down-regulation of the individual PI 4-kinase enzymes, revealed that PI 4-kinase beta has a dominant role in ceramide transport between the ER and Golgi. Accordingly, inhibition of PI 4-kinase III beta either by wortmannin or PIK93 inhibited the conversion of [3H]serine-labeled endogenous ceramide to sphingomyelin. Therefore, PI 4-kinase beta is a key Enzyme in the control of spingomyelin synthesis by controlling the flow of ceramide from the ER to the Golgi compartment.

Figures
Products