1. Academic Validation
  2. S-Allylmercaptocysteine attenuates Bleomycin-induced pulmonary fibrosis in mice via suppressing TGF-β1/Smad and oxidative stress pathways

S-Allylmercaptocysteine attenuates Bleomycin-induced pulmonary fibrosis in mice via suppressing TGF-β1/Smad and oxidative stress pathways

  • Int Immunopharmacol. 2020 Feb;79:106110. doi: 10.1016/j.intimp.2019.106110.
Chunyan Li 1 Xiao Sun 1 Ang Li 1 Min Mo 1 Zhongxi Zhao 2
Affiliations

Affiliations

  • 1 School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China.
  • 2 School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China. Electronic address: [email protected].
Abstract

Pulmonary fibrosis (PF) is a disease characterized by diffusing alveolar inflammation and alveolar structural disorders that ultimately lead to pulmonary interstitial fibrosis. S-allylmercaptocysteine (SAMC) as a water-soluble organosulfur garlic derivative exhibits efficient anti-inflammatory and anti-oxidative activities. In this study, we attempted to explore the function of SAMC in inhibiting bleomycin (BLM)-induced pulmonary fibrosis in mice. 0.035 U/g of BLM was intraperitoneally injected into mice twice per week for 4 weeks to induce fibrosis. SAMC (25 and 50 mg/kg) and N-acetylcysteine (NAC, 600 mg/kg) were given to mice for 28 days. The results indicate that SAMC could significantly ameliorate the pathological structure, and decrease inflammatory cell infiltration and pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) in BLM-induced pulmonary fibrosis mice. SAMC showed an anti-fibrosis effect by increasing anti-oxidants like HO-1, GSH and SOD as well as decreasing hydroxyproline (HYP) in BLM-induced mice. Mechanistic studies suggested that SAMC alleviated oxidative stress probably by impacting the Nox4/Nrf2 pathways, and played an anti-fibrosis role with decreasing the expression of α-SMA, collagen III, collagen I by suppressing the TGF-β1/Smad pathway. These findings indicate that SAMC may be partially responsible for the therapeutic effect on PF patients.

Keywords

Bleomycin; Nrf2; PF; S-allylmercaptocysteine; TGF-β1.

Figures
Products