1. Academic Validation
  2. RGFP966 is protective against lipopolysaccharide-induced depressive-like behaviors in mice by inhibiting neuroinflammation and microglial activation

RGFP966 is protective against lipopolysaccharide-induced depressive-like behaviors in mice by inhibiting neuroinflammation and microglial activation

  • Int Immunopharmacol. 2021 Dec;101(Pt B):108259. doi: 10.1016/j.intimp.2021.108259.
He-Tao Bian 1 Ling Xiao 1 Liang Liang 1 Yin-Ping Xie 1 Hui-Ling Wang 1 Gao-Hua Wang 2
Affiliations

Affiliations

  • 1 Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China.
  • 2 Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China. Electronic address: [email protected].
Abstract

Depression is a prevalent mental disorder. However, its pathophysiological mechanism has still remained elusive, and a limited number of effective treatments have been presented. Recent studies have shown that neuroinflammation and microglial activation are involved in the pathogenesis of depression. Histone deacetylase 3 (HDAC3) has neurotoxic effects on several neuropathological conditions. The inhibition of HDAC3 has been reported to induce anti-inflammatory and antioxidant effects. RGFP966 is a highly selective inhibitor of HDAC3. This study aimed to investigate the antidepressant effect of RGFP966 on lipopolysaccharide (LPS)-induced depressive-like behaviors in mice and to explore its possible mechanism. Adult male C57BL/6J mice were utilized in this study. The LPS and RGFP966 were injected intraperitoneally daily for 5 days. The behavior tests were performed to elucidate the depression-like behaviors. Western blot, ELISA and immunofluorescence staining were used to study the HDAC3/TLR4/NLRP3 pathway-related proteins. The results of behavioral tests showed that RGFP966 could improve the LPS-induced depressive-like behaviors in mice. The results of Western blotting showed that RGFP966 treatment downregulated the expression levels of Toll-like Receptor 4 (TLR4), nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3), Caspase-1, and interleukin-1β (IL-1β) (P < 0.05). Furthermore, the results of immunofluorescence staining showed that RGFP966 treatment inhibited microglial activation in the hippocampus of mice (P < 0.01). These findings suggested that RGFP966 could effectively ameliorate LPS-induced depressive-like behaviors in mice by inhibiting neuroinflammation and microglial activation. The anti-inflammatory mechanism of RGFP966 might be related to the inhibition of the HDAC3/TLR4/NLRP3 signaling pathway. Therefore, inhibition of HDAC3 using RGFP966 could serve as a potential treatment strategy for depression.

Keywords

Depression; HDAC3; Lipopolysaccharide; NLRP3; Neuroinflammation; RGFP966.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-13909
    99.81%, HDAC3 Inhibitor