1. Academic Validation
  2. ATXN3 controls DNA replication and transcription by regulating chromatin structure

ATXN3 controls DNA replication and transcription by regulating chromatin structure

  • Nucleic Acids Res. 2023 Mar 27;gkad212. doi: 10.1093/nar/gkad212.
Esperanza Hernández-Carralero 1 2 3 Elisa Cabrera 1 Gara Rodríguez-Torres 1 2 3 Yeray Hernández-Reyes 1 2 3 Abhay N Singh 4 Cristina Santa-María 5 José Miguel Fernández-Justel 5 Roel C Janssens 6 Jurgen A Marteijn 6 Bernd O Evert 7 Niels Mailand 8 9 María Gómez 5 Kristijan Ramadan 4 Veronique A J Smits 1 3 10 Raimundo Freire 1 3 10
Affiliations

Affiliations

  • 1 Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain.
  • 2 Escuela de Doctorado y Estudios de Posgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain.
  • 3 Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
  • 4 MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
  • 5 Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain.
  • 6 Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
  • 7 Department of Neurology, University Hospital Bonn, Bonn, Germany.
  • 8 Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
  • 9 Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
  • 10 Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.
Abstract

The deubiquitinating Enzyme Ataxin-3 (ATXN3) contains a polyglutamine (PolyQ) region, the expansion of which causes spinocerebellar ataxia type-3 (SCA3). ATXN3 has multiple functions, such as regulating transcription or controlling genomic stability after DNA damage. Here we report the role of ATXN3 in chromatin organization during unperturbed conditions, in a catalytic-independent manner. The lack of ATXN3 leads to abnormalities in nuclear and nucleolar morphology, alters DNA replication timing and increases transcription. Additionally, indicators of more open chromatin, such as increased mobility of histone H1, changes in epigenetic marks and higher sensitivity to micrococcal nuclease digestion were detected in the absence of ATXN3. Interestingly, the effects observed in cells lacking ATXN3 are epistatic to the inhibition or lack of the histone deacetylase 3 (HDAC3), an interaction partner of ATXN3. The absence of ATXN3 decreases the recruitment of endogenous HDAC3 to the chromatin, as well as the HDAC3 nuclear/cytoplasm ratio after HDAC3 overexpression, suggesting that ATXN3 controls the subcellular localization of HDAC3. Importantly, the overexpression of a PolyQ-expanded version of ATXN3 behaves as a null mutant, altering DNA replication parameters, epigenetic marks and the subcellular distribution of HDAC3, giving new insights into the molecular basis of the disease.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-13909
    99.81%, HDAC3 Inhibitor