1. Academic Validation
  2. The protective effects of sophocarpine on sepsis-induced cardiomyopathy

The protective effects of sophocarpine on sepsis-induced cardiomyopathy

  • Eur J Pharmacol. 2023 May 3;950:175745. doi: 10.1016/j.ejphar.2023.175745.
Yang Fu 1 Hong-Jin Zhang 1 Wei Zhou 1 Ze-Qun Lai 1 Yi-Fei Dong 2
Affiliations

Affiliations

  • 1 Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, China; Jiangxi Key Laboratory of Molecular Medicine, China.
  • 2 Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, China; Jiangxi Key Laboratory of Molecular Medicine, China. Electronic address: [email protected].
Abstract

This investigation elucidates the impact of sophocarpine treatment on lipopolysaccharide (LPS) stimulated sepsis-induced cardiomyopathy (SIC) via in vivo and in vitro experiments. Echocardiography, ELISA, TUNEL, Western blotting experiments, and Hematoxylin/Eosin, Dihydroethidium, and Immunohistochemistry staining assays, were carried out to identify associated indicators. The echocardiography revealed that sophocarpine treatment alleviated LPS-induced cardiac dysfunction as indicated by fractional shortening shortened and improved ejection fraction. Heart injury biomarkers, such as creatine kinase, Lactate Dehydrogenase, and creatine kinase-MB, were assessed, and indicated that sophocarpine treatment could alleviate LPS-induced upregulation of these indices. Furthermore, different experimental protocols revealed that sophocarpine treatment inhibits LPS-induced pathological alterations and decreases LPS-stimulated inflammatory cytokines, IL-1β, monocyte chemoattractant protein-1, IL-6, NOD-like receptor protein-3, and TNF-α, increase. Apoptotic proteins such as cytochrome-c, Bax, and cleaved-caspase-3 were increased, and Bcl-2 was alleviated after LPS stimulation; however, these effects were inhibited by sophocarpine treatment. Decreased antioxidant proteins [superoxide dismutase-1 (SOD-1) and SOD-2] induced by LPS stimulation were upregulated by sophocarpine treatment. LPS upregulated autophagic proteins such as Beclin-1 and the ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II/LC3-I and downregulated sequestosome 1 (SQSTM1, or P62), sophocarpine therapy reversed these effects. Moreover, it was indicated that sophocarpine treatment inhibited the Toll-like receptor-4 (TLR-4)/nuclear transcription factor-kappa B (NF-κB) signaling pathway and activated nuclear factor erythroid 2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. In conclusion, sophocarpine treatment could alleviate LPS-trigger SIC by repressing oxidative stress, Autophagy, inflammation, and Apoptosis via TLR-4/NF-κB inhibition and Nrf2/HO-1 signaling pathway activation, implicating the potential of sophocarpine as a new therapeutic approach against SIC.

Keywords

Lipopolysaccharide; Sepsis-induced cardiomyopathy; Sophocarpine.

Figures
Products