1. Academic Validation
  2. Enhanced therapeutic effect of PEDF-loaded mesenchymal stem cell-derived small extracellular vesicles against oxygen-induced retinopathy through increased stability and penetrability of PEDF

Enhanced therapeutic effect of PEDF-loaded mesenchymal stem cell-derived small extracellular vesicles against oxygen-induced retinopathy through increased stability and penetrability of PEDF

  • J Nanobiotechnology. 2023 Sep 8;21(1):327. doi: 10.1186/s12951-023-02066-z.
Ruiyan Fan # 1 Lin Su # 1 Hui Zhang 1 Yilin Jiang 1 Zihao Yu 1 Xiaomin Zhang 2 Xiaorong Li 3
Affiliations

Affiliations

  • 1 Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
  • 2 Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China. [email protected].
  • 3 Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute, School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China. [email protected].
  • # Contributed equally.
Abstract

Background: Several common retinal diseases that cause blindness are characterised by pathological neovascularisation accompanied by inflammation and neurodegeneration, including retinopathy of prematurity (ROP), diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinal vein occlusion (RVO). The current treatment strategies for these diseases have limited benefits. Thus, safer and more effective alternative approaches are required. In this study, we loaded small extracellular vesicles (sEVs) derived from mesenchymal stem cell (MSC) with pigment epithelium-derived factor (PEDF), and tested the therapeutic effect of PEDF-loaded sEVs (PEDF-sEVs) using an oxygen induced retinopathy (OIR) mouse model, aiming to establish a new therapy strategy for the treatment of retinal pathological angiogenesis.

Results: We formulated PEDF-loaded sEVs (PEDF-sEVs) containing high concentrations of PEDF and evaluated their effects through in vivo and in vitro experiments. In OIR mice, PEDF-sEVs showed significantly better effects on retinal avascular areas, inflammation, and neuronal degeneration compared with the anti-vascular endothelial growth factor (VEGF) drug, which may indicate a possible advantage of PEDF-sEVs over anti-VEGF drugs in the treatment of pathological neovascularisation. In vitro, PEDF-sEVs greatly inhibited endothelial cell (EC) proliferation, migration, and tube formation by suppressing the VEGF-induced phosphorylation of extracellular signal-regulated kinase (ERK) and Akt (also known as Protein Kinase B). All experiments and analyses were performed in triplicate. PEDF-sEVs were more effective than PEDF or sEVs alone, both in vitro and in vivo. Furthermore, to determine the distribution of PEDF-sEVs, we used DiD-labelled sEVs and FITC-labelled PEDF to track the sEVs and PEDF, respectively. We found that PEDF-sEVs effectively reduced the degradation of PEDF.

Conclusions: Loading PEDF on sEVs effectively enhanced the anti-angiogenic, anti-inflammatory, and neuroprotective effects of PEDF by increasing the stability and penetrability. These results suggest a potential role for PEDF-sEVs in retinal pathological neovascularisation.

Keywords

Mesenchymal stem cells; Oxygen-induced retinopathy mouse model; Pigment epithelium-derived factor; Small extracellular vesicles.

Figures
Products