1. Academic Validation
  2. The SMYD3-MAP3K2 signaling axis promotes tumor aggressiveness and metastasis in prostate cancer

The SMYD3-MAP3K2 signaling axis promotes tumor aggressiveness and metastasis in prostate cancer

  • Sci Adv. 2023 Nov 15;9(46):eadi5921. doi: 10.1126/sciadv.adi5921.
Sabeen Ikram 1 Apurv Rege 1 Maraki Y Negesse 1 Alexandre G Casanova 2 Nicolas Reynoird 2 Erin M Green 1 3
Affiliations

Affiliations

  • 1 Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA.
  • 2 Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Institute for Advanced Biosciences, Grenoble, France.
  • 3 Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
Abstract

Aberrant activation of Ras/Raf/mitogen-activated protein kinase (MAPK) signaling is frequently linked to metastatic prostate Cancer (PCa); therefore, the characterization of modulators of this pathway is critical for defining therapeutic vulnerabilities for metastatic PCa. The lysine methyltransferase SET and MYND domain 3 (SMYD3) methylates MAPK kinase kinase 2 (MAP3K2) in some cancers, causing enhanced activation of MAPK signaling. In PCa, SMYD3 is frequently overexpressed and associated with disease severity; however, its molecular function in promoting tumorigenesis has not been defined. We demonstrate that SMYD3 critically regulates tumor-associated phenotypes via its methyltransferase activity in PCa cells and mouse xenograft models. SMYD3-dependent methylation of MAP3K2 promotes epithelial-mesenchymal transition associated behaviors by altering the abundance of the intermediate filament vimentin. Furthermore, activation of the SMYD3-MAP3K2 signaling axis supports a positive feedback loop continually promoting high levels of SMYD3. Our data provide insight into signaling pathways involved in metastatic PCa and enhance understanding of mechanistic functions for SMYD3 to reveal potential therapeutic opportunities for PCa.

Figures
Products