1. Academic Validation
  2. Retinoic acid promotes differentiation of photoreceptors in vitro

Retinoic acid promotes differentiation of photoreceptors in vitro

  • Development. 1994 Aug;120(8):2091-102. doi: 10.1242/dev.120.8.2091.
M W Kelley 1 J K Turner T A Reh
Affiliations

Affiliation

  • 1 Department of Biological Structure, University of Washington, Seattle 98195.
Abstract

The results of several recent studies have demonstrated that cell commitment and differentiation in the developing vertebrate retina are influenced by cell-cell interactions within the microenvironment. Retinoic acid has been shown to influence cell fates during development of the nervous system, and retinoic acid has been detected in the embryonic retina. To determine whether retinoic acid mediates the differentiation of specific neuronal phenotypes during retinal histogenesis, we treated dissociated cell cultures of embryonic and neonatal rat retina with varying concentrations of all-trans or 9-cis retinoic acid and analyzed the effects on cell fate using neuron and photoreceptor-specific Antibodies. Addition of exogenous retinoic acid caused a dose-dependent, specific increase in the number of cells that developed as photoreceptors in culture throughout the period of retinal neurogenesis. In the same cultures, retinoic acid also caused a dose-dependent decrease in the number of cells that developed as amacrine cells. Also, results of double-labeled immunohistochemical studies using bromodeoxyuridine demonstrated that the primary effect of retinoic acid was to influence progenitor cells to develop as newly generated rod photoreceptors. Since retinoic acid and at least one of the retinoic acid receptors (RAR alpha) have been localized to the developing neural retina, these results suggest that retinoic acid may play a role in the normal development of photoreceptor cells in vivo.

Figures
Products