1. Academic Validation
  2. 2-Deoxy-D-galactose metabolism in ascites hepatoma cells results in phosphate trapping and glycolysis inhibition

2-Deoxy-D-galactose metabolism in ascites hepatoma cells results in phosphate trapping and glycolysis inhibition

  • Eur J Biochem. 1977 Feb 15;73(1):83-92. doi: 10.1111/j.1432-1033.1977.tb11293.x.
D F Smith D O Keppler
Abstract

The metabolism of 2-deoxy-D-galactose has been studied in AS-30D rat ascites hepatoma cells in suspension. Using 2-deoxy-D-(1-14C)galactose and an alkaline ethanol deproteinization procedure, the quantitatively identified metabolites included 2-deoxy-D-galactose 1-phosphate comprising 99.3%, and UDP-2-deoxy-D-galactose and UDP-2-deoxy-D-glucose, together amounting to 0.4% of the total metabolites. After incubation for 5 h in the presence of 2-deoxy-D-galactose (1 mmo1/1), the content of 2-deoxy-D-galactose 1-phosphate reached 35 mmo1x(kg cells)-1. The rate of phosphorylation of 2-deoxy-D-galactose was rapid during the first 30 min and decreased to approximately 20% of this rate during the subsequent hours. The rapid trapping of Pi in the form of 2-deoxy-D-galactose 1-phosphate resulted in a depression of free intracellular Pi in spite of a concomitant increase in net 32Pi uptake from the medium and a decrease of ATP and other 5'-nucleotides. The rates of glucose utilization and lactate production were depressed by more than 80% in the presence of 2-deoxy-D-galactose (1 mmo1/1). Interruption of Pi trapping by removal of 2-deoxy-D-galactose from the medium reversed the depressions of Pi and ATP and resulted in a rapid but incomplete relief of glycolysis inhibition. Crossover analysis of glycolytic intermediates indicated an inhibition at the 6-phosphofructokinase step. The depression of glucose utilization may be mediated by the increased level of glucose 6-phosphate, a potent inhibitor of Hexokinase. An additional inhibitory effect of a metabolite of 2-deoxy-D-galactose at the 6-phosphofructokinase step was indicated by crossover analysis after reversal of Pi and ATP depressions in the presence of a high intracellular content of 2-deoxy-D-glactose 1-phosphate. The quantitative analysis of the metabolites of 2-deoxy-D-galactose demonstrated the predominance of the monophosphate and the negligible formation of UPD derivatives of this sugar analog in AS-30D hepatoma cells. This provides a system for the investigation of a galactose analog as a phosphate-trapping agent in the virtual absence of uridylate trapping.

Figures
Products