1. Academic Validation
  2. Triazolothienopyrimidine inhibitors of urea transporter UT-B reduce urine concentration

Triazolothienopyrimidine inhibitors of urea transporter UT-B reduce urine concentration

  • J Am Soc Nephrol. 2012 Jul;23(7):1210-20. doi: 10.1681/ASN.2011070751.
Chenjuan Yao 1 Marc O Anderson Jicheng Zhang Baoxue Yang Puay-Wah Phuan A S Verkman
Affiliations

Affiliation

  • 1 Department of Medicine, University of California, San Francisco, USA.
Abstract

Urea transport (UT) proteins facilitate the concentration of urine by the kidney, suggesting that inhibition of these proteins could have therapeutic use as a diuretic strategy. We screened 100,000 compounds for UT-B inhibition using an optical assay based on the hypotonic lysis of acetamide-loaded mouse erythrocytes. We identified a class of triazolothienopyrimidine UT-B inhibitors; the most potent compound, UTB(inh)-14, fully and reversibly inhibited urea transport with IC(50) values of 10 nM and 25 nM for human and mouse UT-B, respectively. UTB(inh)-14 competed with urea binding at an intracellular site on the UT-B protein. UTB(inh)-14 exhibited low toxicity and high selectivity for UT-B over UT-A isoforms. After intraperitoneal administration of UTB(inh)-14 in mice to achieve predicted therapeutic concentrations in the kidney, urine osmolality after administration of 1-deamino-8-D-arginine-vasopressin was approximately 700 mosm/kg H(2)O lower in UTB(inh)-14-treated mice than vehicle-treated mice. UTB(inh)-14 also increased urine output and reduced urine osmolality in mice given free access to water. UTB(inh)-14 did not reduce urine osmolality in UT-B knockout mice. In summary, these data provide proof of concept for the potential utility of UT inhibitors to reduce urinary concentration in high-vasopressin, fluid-retaining conditions. The diuretic mechanism of UT inhibitors may complement the action of conventional diuretics, which target sodium transport.

Figures
Products