1. Others
  2. Biochemical Assay Reagents
  3. Sodium laureth sulfate

Sodium laureth sulfate  (Synonyms: Sodium lauryl polyoxyethylene ether sulfate)

Cat. No.: HY-A0272
COA Handling Instructions

Sodium lauryl polyoxyethylene ether sulfate is an anionic active agent with excellent decontamination, emulsification, dispersion, wetting and other properties.

For research use only. We do not sell to patients.

Sodium laureth sulfate Chemical Structure

Sodium laureth sulfate Chemical Structure

CAS No. : 9004-82-4

Size Price Stock Quantity
Solvent
700 mg (700 mg/mL * 1 mL in Water) USD 55 In-stock
Synthetic products have potential research and development risk.

* Please select Quantity before adding items.

This product is a controlled substance and not for sale in your territory.

Customer Review

Based on 1 publication(s) in Google Scholar

Top Publications Citing Use of Products

1 Publications Citing Use of MCE Sodium laureth sulfate

  • Biological Activity

  • Purity & Documentation

  • Customer Review

Description

Sodium lauryl polyoxyethylene ether sulfate is an anionic active agent with excellent decontamination, emulsification, dispersion, wetting and other properties.

Formula

(C2H4O)nC12H26O4S.Na

CAS No.
Appearance

Liquid

Color

Colorless to yellow

SMILES

CCCCCCCCCCCCOCCOS(=O)(O[Na])=O.[n]

Shipping

Room temperature in continental US; may vary elsewhere.

Storage

Solution, -20°C, 2 years

Solvent & Solubility
In Vitro: 

H2O : 416.67 mg/mL (Need ultrasonic)

Ethanol : 100 mg/mL (Need ultrasonic)

  • Molarity Calculator

  • Dilution Calculator

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass
=
Concentration
×
Volume
×
Molecular Weight *

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start)

C1

×
Volume (start)

V1

=
Concentration (final)

C2

×
Volume (final)

V2

In Vivo:

Select the appropriate dissolution method based on your experimental animal and administration route.

For the following dissolution methods, please ensure to first prepare a clear stock solution using an In Vitro approach and then sequentially add co-solvents:
To ensure reliable experimental results, the clarified stock solution can be appropriately stored based on storage conditions. As for the working solution for in vivo experiments, it is recommended to prepare freshly and use it on the same day.
The percentages shown for the solvents indicate their volumetric ratio in the final prepared solution. If precipitation or phase separation occurs during preparation, heat and/or sonication can be used to aid dissolution.

  • Protocol 1

    Add each solvent one by one:  10% EtOH    40% PEG300    5% Tween-80    45% Saline

    Solubility: ≥ 3 mg/mL (Infinity mM); Clear solution

    This protocol yields a clear solution of ≥ 3 mg/mL (saturation unknown).

    Taking 1 mL working solution as an example, add 100 μL EtOH stock solution (30.0 mg/mL) to 400 μL PEG300, and mix evenly; then add 50 μL Tween-80 and mix evenly; then add 450 μL Saline to adjust the volume to 1 mL.

    Preparation of Saline: Dissolve 0.9 g sodium chloride in ddH₂O and dilute to 100 mL to obtain a clear Saline solution.
  • Protocol 2

    Add each solvent one by one:  10% EtOH    90% (20% SBE-β-CD in Saline)

    Solubility: ≥ 3 mg/mL (Infinity mM); Clear solution

    This protocol yields a clear solution of ≥ 3 mg/mL (saturation unknown).

    Taking 1 mL working solution as an example, add 100 μL EtOH stock solution (30.0 mg/mL) to 900 μL 20% SBE-β-CD in Saline, and mix evenly.

    Preparation of 20% SBE-β-CD in Saline (4°C, storage for one week): 2 g SBE-β-CD powder is dissolved in 10 mL Saline, completely dissolve until clear.

For the following dissolution methods, please prepare the working solution directly. It is recommended to prepare fresh solutions and use them promptly within a short period of time.
The percentages shown for the solvents indicate their volumetric ratio in the final prepared solution. If precipitation or phase separation occurs during preparation, heat and/or sonication can be used to aid dissolution.

  • Protocol 1

    Add each solvent one by one:  PBS

    Solubility: 110 mg/mL (Infinity mM); Clear solution; Need ultrasonic

In Vivo Dissolution Calculator
Please enter the basic information of animal experiments:

Dosage

mg/kg

Animal weight
(per animal)

g

Dosing volume
(per animal)

μL

Number of animals

Recommended: Prepare an additional quantity of animals to account for potential losses during experiments.
Calculation results:
Working solution concentration: mg/mL
This product has good water solubility, please refer to the measured solubility data in water/PBS/Saline for details.
The concentration of the stock solution you require exceeds the measured solubility. The following solution is for reference only.If necessary, please contact MedChemExpress (MCE).
Purity & Documentation

  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.

Sodium laureth sulfate Related Classifications

Help & FAQs
  • Do most proteins show cross-species activity?

    Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product Name

 

Salutation

Applicant Name *

 

Email Address *

Phone Number *

 

Organization Name *

Department *

 

Requested quantity *

Country or Region *

     

Remarks

Bulk Inquiry

Inquiry Information

Product Name:
Sodium laureth sulfate
Cat. No.:
HY-A0272
Quantity:
MCE Japan Authorized Agent: