1. Academic Validation
  2. p38 and p42/44 MAPKs differentially regulate progesterone receptor A and B isoform stabilization

p38 and p42/44 MAPKs differentially regulate progesterone receptor A and B isoform stabilization

  • Mol Endocrinol. 2011 Oct;25(10):1710-24. doi: 10.1210/me.2011-1042.
Junaid A Khan 1 Larbi Amazit Catherine Bellance Anne Guiochon-Mantel Marc Lombès Hugues Loosfelt
Affiliations

Affiliation

  • 1 Institut National de la Santé et de la Recherche Médicale Unité 693, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France.
Abstract

Progesterone Receptor (PR) isoforms (PRA and PRB) are implicated in the progression of breast cancers frequently associated with imbalanced PRA/PRB expression ratio. Antiprogestins represent potential antitumorigenic agents for such hormone-dependent cancers. To investigate the mechanism(s) controlling PR isoforms degradation/stability in the context of agonist and antagonist ligands, we used endometrial and mammary Cancer cells stably expressing PRA and/or PRB. We found that the antiprogestin RU486 inhibited the agonist-induced turnover of PR isoforms through active mechanism(s) involving distinct MAPK-dependent phosphorylations. p42/44 MAPK activity inhibited proteasome-mediated degradation of RU486-bound PRB but not PRA in both cell lines. Ligand-induced PRB turnover required neosynthesis of a mandatory down-regulating partner whose interaction/function is negatively controlled by p42/44 MAPK. Such regulation strongly influenced expression of various endogenous PRB target genes in a selective manner, supporting functional relevance of the mechanism. Interestingly, in contrast to PRB, PRA stability was specifically increased by MAPK kinase kinase 1-induced p38 MAPK activation. Selective inhibition of p42/p44 or p38 activity resulted in opposite variations of the PRA/PRB expression ratio. Moreover, MAPK-dependent PR isoforms stability was independent of PR serine-294 phosphorylation previously proposed as a major sensor of PR down-regulation. In sum, we demonstrate that MAPK-mediated cell signaling differentially controls PRA/PRB expression ratio at posttranslational level through ligand-sensitive processes. Imbalance in PRA/PRB ratio frequently associated with carcinogenesis might be a direct consequence of disorders in MAPK signaling that might switch cellular responses to hormonal stimuli and contribute towards pathogenesis.

Figures
Products