1. Academic Validation
  2. Ovarian Cancer Relies on Glucose Transporter 1 to Fuel Glycolysis and Growth: Anti-Tumor Activity of BAY-876

Ovarian Cancer Relies on Glucose Transporter 1 to Fuel Glycolysis and Growth: Anti-Tumor Activity of BAY-876

  • Cancers (Basel). 2018 Dec 31;11(1):33. doi: 10.3390/cancers11010033.
Yibao Ma 1 Wei Wang 2 Michael O Idowu 3 Unsong Oh 4 Xiang-Yang Wang 5 Sarah M Temkin 6 Xianjun Fang 7
Affiliations

Affiliations

  • 1 Department of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, 1101 East Marshall Street, Richmond, VA 23298, USA. [email protected].
  • 2 Department of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, 1101 East Marshall Street, Richmond, VA 23298, USA. [email protected].
  • 3 Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA. [email protected].
  • 4 Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA. [email protected].
  • 5 Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA. [email protected].
  • 6 Gynecological Oncology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA. [email protected].
  • 7 Department of Biochemistry & Molecular Biology, Virginia Commonwealth University School of Medicine, 1101 East Marshall Street, Richmond, VA 23298, USA. [email protected].
Abstract

The recent progresses in understanding of Cancer glycolytic phenotype have offered new strategies to manage ovarian Cancer and other malignancies. However, therapeutic targeting of glycolysis to treat Cancer remains unsuccessful due to complex mechanisms of tumor glycolysis and the lack of selective, potent and safe glycolytic inhibitors. Recently, BAY-876 was identified as a new-generation inhibitor of glucose transporter 1 (GLUT1), a GLUT isoform commonly overexpressed but functionally poorly defined in ovarian Cancer. Notably, BAY-876 has not been evaluated in any cell or preclinical animal models since its discovery. We herein took advantage of BAY-876 and molecular approaches to study GLUT1 regulation, targetability, and functional relevance to Cancer glycolysis. The anti-tumor activity of BAY-876 was evaluated with ovarian Cancer cell line- and patient-derived xenograft (PDX) models. Our results show that inhibition of GLUT1 is sufficient to block basal and stress-regulated glycolysis, and anchorage-dependent and independent growth of ovarian Cancer cells. BAY-876 dramatically inhibits tumorigenicity of both cell line-derived xenografts and PDXs. These studies provide direct evidence that GLUT1 is causally linked to the glycolytic phenotype in ovarian Cancer. BAY-876 is a potent blocker of GLUT1 activity, glycolytic metabolism and ovarian Cancer growth, holding promise as a novel glycolysis-targeted anti-cancer agent.

Keywords

BAY-876; glucose transporter 1; glycolysis; ovarian cancer; patient-derived xenograft.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-100017
    98.46%, GLUT1 Inhibitor