1. Academic Validation
  2. Primary cilia mediate mitochondrial stress responses to promote dopamine neuron survival in a Parkinson's disease model

Primary cilia mediate mitochondrial stress responses to promote dopamine neuron survival in a Parkinson's disease model

  • Cell Death Dis. 2019 Dec 16;10(12):952. doi: 10.1038/s41419-019-2184-y.
Ji-Eun Bae 1 Gil Myung Kang 2 Se Hee Min 3 Doo Sin Jo 1 4 Yong-Keun Jung 5 Keetae Kim 6 Min-Seon Kim 7 Dong-Hyung Cho 8 9
Affiliations

Affiliations

  • 1 Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Korea.
  • 2 Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
  • 3 Divison of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
  • 4 School of Life Sciences, Kyungpook National University, Daegu, 41566, Korea.
  • 5 Global Research Laboratory, School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
  • 6 Department of New Biology, DGIST, Daegu, 42988, Korea.
  • 7 Divison of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea. [email protected].
  • 8 Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Korea. [email protected].
  • 9 School of Life Sciences, Kyungpook National University, Daegu, 41566, Korea. [email protected].
Abstract

A primary cilium is an antenna-like structure on the cell surface that plays a crucial role in sensory perception and signal transduction. Mitochondria, the 'powerhouse' of the cell, control cell survival, and death. The cellular ability to remove dysfunctional mitochondria through Mitophagy is important for cell survival. We show here that mitochondrial stress, caused by respiratory complex inhibitors and excessive fission, robustly stimulates ciliogenesis in different types of cells including neuronal cells. Mitochondrial stress-induced ciliogenesis is mediated by mitochondrial Reactive Oxygen Species generation, subsequent activation of AMP-activated protein kinase and Autophagy. Conversely, abrogation of ciliogenesis compromises mitochondrial stress-induced Autophagy, leading to enhanced cell death. In mice, treatment with mitochondrial toxin, MPTP elicits ciliary elongation and Autophagy in the substantia nigra dopamine neurons. Blockade of cilia formation in these neurons attenuates MPTP-induced Autophagy but facilitates dopamine neuronal loss and motor disability. Our findings demonstrate the important role of primary cilia in cellular pro-survival responses during mitochondrial stress.

Figures
Products