1. Academic Validation
  2. MiR-19b-3p Inhibits Hypoxia-Ischemia Encephalopathy by Inhibiting SOX6 Expression via Activating Wnt/β-catenin Pathway

MiR-19b-3p Inhibits Hypoxia-Ischemia Encephalopathy by Inhibiting SOX6 Expression via Activating Wnt/β-catenin Pathway

  • Neurochem Res. 2022 Nov 12. doi: 10.1007/s11064-022-03812-9.
Hao Zeng 1 Yu-Xia Chen 2
Affiliations

Affiliations

  • 1 Department of Neurosurgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, People's Republic of China.
  • 2 Department of Neontal Development, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Avenue, Longhua District, Shenzhen, 518110, Guangdong, People's Republic of China. [email protected].
Abstract

Hypoxic-ischemic encephalopathy (HIE) is a detrimental factor in infant death and chronic disease. The specific pathogenesis is not entirely clear. Therefore, exploring the pathogenesis of HIE is critical. The expression of miR-19b-3p and SOX6 in umbilical blood of HIE patients was detected by qRT-PCR assay. HT22 cells were triggered with oxygen-glucose deprivation/reoxygenation (OGD/R) to construct the HIE cell model. Cell Counting Kit-8 (CCK-8) assay was used to estimate viability. SOD and MDA levels were detected by Enzyme linked immunosorbent assay. Flow cytometry was implemented to ascertain neurocyte Apoptosis. Cellular β-catenin immunofluorescence staining was used to detect the expression and distribution of β-catenin protein. Wnt signaling pathway activation was detected by TOPFlash/FOPFlash luciferase reporter assay. The targeting correlation of SOX6 and miR-19b-3p was corroborated by dual-luciferase reporter gene assay and RNA pull-down assay. MiR-19b-3p expression was once down-regulated, whilst SOX6 expression was up-regulated in HIE patients. MiR-19b-3p overexpression promoted cell proliferation, repressed cell Apoptosis, oxidative stress response, and Wnt/β-catenin pathway activation in OGD/R-triggered HT22 cells. MiR-19b-3p negatively regulated SOX6 expression. SOX6 knockdown improved OGD/R-triggered HT22 cells injury via Wnt/β-catenin pathway activation. MiR-19b-3p overexpression suppressed OGD/R-triggered HT22 cell injury via inhibiting SOX6 expression via activating Wnt/β-catenin pathway.

Keywords

HT22 cells; Hypoxic-ischemic encephalopathy; SOX6; Wnt/β-catenin pathway; miR-19b-3p.

Figures
Products