1. Academic Validation
  2. Blocking Notch signalling reverses miR-155-mediated inflammation in allergic rhinitis

Blocking Notch signalling reverses miR-155-mediated inflammation in allergic rhinitis

  • Int Immunopharmacol. 2023 Feb 8;116:109832. doi: 10.1016/j.intimp.2023.109832.
Ziling Zhong 1 Xueying Huang 2 Shaojie Zhang 2 Shaochuan Zheng 3 Xiqiao Cheng 1 Rongrong Li 2 Di Wu 3 Liping Mo 2 Shenhong Qu 4
Affiliations

Affiliations

  • 1 Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China; Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
  • 2 Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China.
  • 3 Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China; Youjiang Medical University for Nationalities, Baize, Guangxi, China.
  • 4 Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Department of Otolaryngology, Nanning, Guangxi, China. Electronic address: [email protected].
Abstract

Although recent studies have shown that the Notch signalling pathway induces the production of Th2-related immune factors, the exact mechanism through which Notch signalling exacerbates allergic rhinitis (AR) remains unknown. To investigate the roles of Notch in AR, serum, nasal mucosa and spleen samples were isolated from BALB/c mice. Paraffin sections were stained with haematoxylin and eosin (H&E) or periodic acid-Schiff (PAS) to assess inflammation. Flow cytometry was performed to detect group 2 innate lymphoid cells (ILC2s) in the serum samples, and cytokine levels were measured by enzyme-linked immunosorbent assays (ELISAs). The mRNA expression levels of the Notch signalling pathway components and miR-155 were measured by quantitative Real-Time PCR (qRT-PCR). In addition, human nasal epithelial cells (HNEpCs) were cultured to investigate the functional consequences of Notch pathway inhibition. The findings demonstrated that symptomatology and pathology were substantially altered, and AR model mice were established. In vivo stimulation with ovalbumin (OVA) significantly increased the Th2-type immune responses and the expression of OVA-sIgE, IL-4, GATA3, NF-κB and miR-155. However, the Notch signalling pathway was significantly deteriorated in AR, and this effect was accompanied by reduced Notch1, Notch2, RBPj and Hes1 levels. These effects were abrogated by gamma-secretase inhibitor IX (DAPT) treatment, and DAPT inhibited the wound healing and proliferation of HNEpCs in a dose-dependent manner. Therefore, our results suggest that blocking the Notch pathway may alleviate miR-155-mediated inflammation via the regulation of immune homeostasis in AR.

Keywords

Allergic rhinitis; Animal model; Homeostasis; Mir-155-mediated regulation; Notch signalling pathway.

Figures
Products