1. Academic Validation
  2. BRF2 is mediated by microRNA-409-3p and promotes invasion and metastasis of HCC through the Wnt/β-catenin pathway

BRF2 is mediated by microRNA-409-3p and promotes invasion and metastasis of HCC through the Wnt/β-catenin pathway

  • Cancer Cell Int. 2023 Mar 16;23(1):46. doi: 10.1186/s12935-023-02893-y.
Jian-Hua Chang # 1 2 Bo-Wen Xu # 1 3 Di Shen 4 Wei Zhao 1 Yue Wang 1 Jia-Liang Liu 1 Guang-Xiao Meng 1 Guang-Zhen Li 5 Zong-Li Zhang 6
Affiliations

Affiliations

  • 1 Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107 Wenhua West Road, Lixia District, Jinan, 250012, Shandong, China.
  • 2 Department of General Surgery, Gansu Province Hospital, Lanzhou, 730000, GanSu Province, China.
  • 3 Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
  • 4 Department of Obstetrics and Gynecology, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, China.
  • 5 Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107 Wenhua West Road, Lixia District, Jinan, 250012, Shandong, China. [email protected].
  • 6 Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107 Wenhua West Road, Lixia District, Jinan, 250012, Shandong, China. [email protected].
  • # Contributed equally.
Abstract

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Its invasiveness and ability to metastasize contributes to an extremely high patient mortality. However, the molecular mechanisms that underlie the characteristics of HCC progression are not well understood. BRF2 has been shown to be an oncogene in a number of tumors; however, its role in HCC has not yet been thoroughly examined. In this study, we identified and validated BRF2 as an oncogene in HCC, providing a new insight into HCC pathogenesis and therapeutic possibilities. We showed that BRF2 expression was significantly upregulated in HCC cell lines and tissues, while BRF2 depletion suppressed HCC metastasis and invasion. We then examined the upstream regulation of BRF2 and identified miR-409-3p as being predicted to bind to the 3' UTR of BRF2. We used a luciferase activity assay and functional verification to show that BRF2 is downregulated by miR-409-3p. Finally, we used bioinformatic analysis to show that BRF2 may be related to early HCC development through the Wnt/β-catenin signaling pathway.

Keywords

BRF2; Hepatocellular carcinoma; Invasion; Metastasis; Wnt/β-catenin; miR-409-3p.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-17545
    99.92%, PORCN Inhibitor