1. Academic Validation
  2. Dual receptor specific nanoparticles targeting EGFR and PD-L1 for enhanced delivery of docetaxel in cancer therapy

Dual receptor specific nanoparticles targeting EGFR and PD-L1 for enhanced delivery of docetaxel in cancer therapy

  • Biomed Pharmacother. 2023 Jun 15;165:115023. doi: 10.1016/j.biopha.2023.115023.
Fakhrossadat Emami 1 Ramesh Duwa 1 Asmita Banstola 2 Seon Min Woo 3 Taeg Kyu Kwon 3 Simmyung Yook 4
Affiliations

Affiliations

  • 1 College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, the Republic of Korea.
  • 2 College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, the Republic of Korea; Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA, 02114, USA.
  • 3 Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, the Republic of Korea.
  • 4 College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, the Republic of Korea. Electronic address: [email protected].
Abstract

Dual-receptor targeted (DRT) nanoparticles which contain two distinct targeting agents may exhibit higher cell selectivity, cellular uptake, and cytotoxicity toward Cancer cells than single-ligand targeted nanoparticle systems without additional functionality. The purpose of this study is to prepare DRT poly(lactic-co-glycolic acid) (PLGA) nanoparticles for targeting the delivery of docetaxel (DTX) to the EGFR and PD-L1 receptor positive Cancer cells such as human glioblastoma multiform (U87-MG) and human non-small cell lung Cancer (A549) cell lines. Anti-EGFR and anti-PD-L1 antibody were decorated on DTX loaded PLGA nanoparticles to prepare DRT-DTX-PLGA via. single emulsion solvent evaporation method. Physicochemical characterizations of DRT-DTX-PLGA, such as particle size, zeta-potential, morphology, and in vitro DTX release were also evaluated. The average particle size of DRT-DTX-PLGA was 124.2 ± 1.1 nm with spherical and smooth morphology. In the cellular uptake study, the DRT-DTX-PLGA endocytosed by the U87-MG and A549 cells was single ligand targeting nanoparticle. From the in vitro cell cytotoxicity, and Apoptosis studies, we reported that DRT-DTX-PLGA exhibited high cytotoxicity and enhanced the apoptotic cell compared to the single ligand-targeted nanoparticle. The dual receptor mediated endocytosis of DRT-DTX-PLGA showed a high binding affinity effect that leads to high intracellular DTX concentration and exhibited high cytotoxic properties. Thus, DRT nanoparticles have the potential to improve Cancer therapy by providing selectivity over single-ligand-targeted nanoparticles.

Keywords

Affinity; Docetaxel; Dual-ligand; Nanoparticle; Poly(lactide-co-glycolide) acid; Single-ligand.

Figures
Products