1. Academic Validation
  2. GSK3β and UCHL3 govern RIPK4 homeostasis via deubiquitination to enhance tumor metastasis in ovarian cancer

GSK3β and UCHL3 govern RIPK4 homeostasis via deubiquitination to enhance tumor metastasis in ovarian cancer

  • Oncogene. 2024 Apr 25. doi: 10.1038/s41388-024-03040-1.
Wulin Shan # 1 Wenju Peng # 1 Yao Chen 2 Yumeng Wang 2 Qiongli Yu 1 Yuan Tian 1 Yingyu Dou 1 Jinqi Tu 3 Xu Huang 1 Xiaoyu Li 1 Zengying Wang 2 Qi Zhu 1 Jiming Chen 4 Bairong Xia 5 6
Affiliations

Affiliations

  • 1 Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China.
  • 2 Department of Obstetrics and Gynecology, Bengbu Medical University, Bengbu, Anhui, 233030, China.
  • 3 Hefei Jingdongfang Hospital, Hefei, Anhui, 230011, China.
  • 4 Department of Gynecology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China. [email protected].
  • 5 Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China. [email protected].
  • 6 Department of Obstetrics and Gynecology, Bengbu Medical University, Bengbu, Anhui, 233030, China. [email protected].
  • # Contributed equally.
Abstract

Receptor-interacting protein kinase 4 (RIPK4) is increasingly recognized as a pivotal player in ovarian Cancer, promoting tumorigenesis and disease progression. Despite its significance, the posttranslational modifications dictating RIPK4 stability in ovarian Cancer remain largely uncharted. In this study, we first established that RIPK4 levels are markedly higher in metastatic than in primary ovarian Cancer tissues through single-cell sequencing. Subsequently, we identified UCHL3 as a key Deubiquitinase that regulates RIPK4. We elucidate the mechanism that UCHL3 interacts with and deubiquitinates RIPK4 at the K469 site, removing the K48-linked ubiquitin chain and thus enhancing RIPK4 stabilization. Intriguingly, inhibition of UCHL3 activity using TCID leads to increased RIPK4 ubiquitination and degradation. Furthermore, we discovered that GSK3β-mediated phosphorylation of RIPK4 at Ser420 enhances its interaction with UCHL3, facilitating further deubiquitination and stabilization. Functionally, RIPK4 was found to drive the proliferation and metastasis of ovarian Cancer in a UCHL3-dependent manner both in vitro and in vivo. Importantly, positive correlations between RIPK4 and UCHL3 protein expression levels were observed, with both serving as indicators of poor prognosis in ovarian Cancer patients. Overall, this study uncovers a novel pathway wherein GSK3β-induced phosphorylation of RIPK4 strengthens its interaction with UCHL3, leading to increased deubiquitination and stabilization of RIPK4, thereby promoting ovarian Cancer metastasis. These findings offer new insights into the molecular underpinnings of ovarian Cancer and highlight potential therapeutic targets for enhancing antitumor efficacy.

Figures
Products