1. Academic Validation
  2. Over-expression of ERT(ESX/ESE-1/ELF3), an ets-related transcription factor, induces endogenous TGF-beta type II receptor expression and restores the TGF-beta signaling pathway in Hs578t human breast cancer cells

Over-expression of ERT(ESX/ESE-1/ELF3), an ets-related transcription factor, induces endogenous TGF-beta type II receptor expression and restores the TGF-beta signaling pathway in Hs578t human breast cancer cells

  • Oncogene. 2000 Jan 6;19(1):151-4. doi: 10.1038/sj.onc.1203252.
J Chang 1 C Lee K B Hahm Y Yi S G Choi S J Kim
Affiliations

Affiliation

  • 1 Laboratory of Cell Regulation, National Cancer Institute, NIH, Bethesda, Maryland, MD 20892-5055, USA.
Abstract

The epithelium-specific transcription factor, ERT/ESX/ESE-1/ELF3, binds to the TGF-beta RII promoter in a sequence specific manner and regulates its expression. In this study, we investigated whether ERT could regulate endogenous TGF-beta RII expression in Hs578t breast Cancer cells. Analyses of the Hs578t parental cell line revealed low RII mRNA expression and resistance to the growth inhibitory effects of TGF-beta. Infection of this cell line with a retroviral construct expressing ERT induced higher levels of endogenous RII mRNA expression and protein expression relative to cells infected with chloramphenicol acetyltransferase (CATneo) as a control. Relative to control cells, the ERTneo-expressing Hs578t cells show approximately a 50% reduction in cell growth in the presence of exogenous TGF-beta1, as well as a fourfold higher induction of activation in transient transfection assays using the 3TP-luciferase reporter construct. When transplanted into athymic mice, ERT-expressing Hs578t cells showed decreased and delayed tumorigenicity compared with control cells. This data strongly suggests that ERT plays an important role as a transcriptional activator of TGF-beta RII expression, and that deregulated ERT expression may play a critical role in rendering Hs578t human breast Cancer cells insensitive to TGF-beta's growth inhibitory effects.

Figures