Signaling Pathway

Membrane Transporter/Ion Channel

Membrane Transporter/Ion Channel

Related Products

PDF File 3.22MB

Ion channels are pore-forming membrane proteins whose functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane, controlling the flow of ions across secretory and epithelial cells, and regulating cell volume. Ion channels are present in the membranes of all cells. Ion channels are considered to be one of the two traditional classes of ionophoric proteins, with the other class known as ion transporters (including the sodium-potassium pump, sodium-calcium exchanger, and sodium-glucose transport proteins, amongst others.

Because channels underlie the nerve impulse and because "transmitter-activated" channels mediate conduction across the synapses, channels are especially prominent components of the nervous system. Indeed, most of the offensive and defensive toxins that organisms have evolved for shutting down the nervous systems of predators and prey work by modulating ion channel conductance and/or kinetics. In addition, ion channels are key components in a wide variety of biological processes that involve rapid changes in cells, such as cardiac, skeletal, and smooth muscle contraction, epithelial transport of nutrients and ions, T-cell activation and pancreatic beta-cell insulin release. In the search for new drugs, ion channels are a frequent target.

A membrane transport protein (or simply transporter) is a membrane protein involved in the movement of ions, small molecules, or macromolecules, such as another protein across a biological membrane. Transport proteins are integral membrane proteins; that is they exist within and span the membrane across which they transport substances. The proteins may assist in the movement of substances by facilitated diffusion or active transport. These mechanisms of action are known as carrier-mediated transport.

The integral membrane protein, M2, of influenza virus forms pH-gated proton channels in the viral lipid envelope. The low pH of an endosome activates the M2 channel prior to hemagglutinin-mediated fusion. Conductance of protons acidifies the viral interior and thereby facilitates dissociation of the matrix protein from the viral nucleoproteins – a required process for unpacking of the viral genome. M2 is the target of Amantadine.

Targets List in Membrane Transporter/Ion Channel