1. Academic Validation
  2. DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation

DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation

  • J Biol Chem. 2001 Apr 20;276(16):12951-8. doi: 10.1074/jbc.M006130200.
Y H Ping 1 T M Rana
Affiliations

Affiliation

  • 1 Department of Pharmacology, Robert Wood Johnson Medical School, and Molecular Biosciences Graduate Program at Rutgers University, Piscataway, New Jersey 08854, USA.
Abstract

Control of transcription elongation requires a complex interplay between the recently discovered positive transcription elongation factor b (P-TEFb) and negative transcription elongation factors, 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB) sensitivity inducing factors (DSIF) and the negative elongation factor (NELF). Activation of HIV-1 gene expression is regulated by a nascent RNA structure, termed TAR RNA, in concert with HIV-1 Tat protein and these positive and negative elongation factors. We have used a stepwise RNA pol II walking approach and Western blotting to determine the dynamics of interactions between HIV-1 Tat, DSIF/NELF, and the transcription complexes actively engaged in elongation. In addition, we developed an in vitro kinase assay to determine the phosphorylation status of proteins during elongation stages. Our results demonstrate that DSIF/NELF associates with RNA pol II complexes during early transcription elongation and travels with elongation complexes as the nascent RNA is synthesized. Our results also show that HIV-1 Tat protein stimulated DSIF and RNA pol II phosphorylation by P-TEFb during elongation. These findings reveal a molecular mechanism for the negative and positive regulation of transcriptional elongation at the HIV-1 promoter.

Figures