1. Academic Validation
  2. Human RNPS1 and its associated factors: a versatile alternative pre-mRNA splicing regulator in vivo

Human RNPS1 and its associated factors: a versatile alternative pre-mRNA splicing regulator in vivo

  • Mol Cell Biol. 2004 Feb;24(3):1174-87. doi: 10.1128/MCB.24.3.1174-1187.2004.
Eiji Sakashita 1 Sawako Tatsumi Dieter Werner Hitoshi Endo Akila Mayeda
Affiliations

Affiliation

  • 1 Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33136-1019, USA.
Abstract

Human RNPS1 was originally purified and characterized as a pre-mRNA splicing activator, and its role in the postsplicing process has also been proposed recently. To search for factors that functionally interact with RNPS1, we performed a yeast two-hybrid screen with a human cDNA library. Four factors were identified: p54 (also called SRp54; a member of the SR protein family), human transformer 2 beta (hTra2 beta; an exonic splicing enhancer-binding protein), hLucA (a potential component of U1 snRNP), and pinin (also called DRS and MemA; a protein localized in nuclear speckles). The N-terminal region containing the serine-rich (S) domain, the central RNA recognition motif (RRM), and the C-terminal arginine/serine/proline-rich (RS/P) domain of RNPS1 interact with p54, pinin, and hTra2 beta, respectively. Protein-protein binding between RNPS1 and these factors was verified in vitro and in vivo. Overexpression of RNPS1 in HeLa cells induced exon skipping in a model beta-globin pre-mRNA and a human tra-2 beta pre-mRNA. Coexpression of RNPS1 with p54 cooperatively stimulated exon inclusion in an ATP Synthase gamma-subunit pre-mRNA. The RS/P domain and RRM are necessary for the exon-skipping activity, whereas the S domain is important for the cooperative effect with p54. RNPS1 appears to be a versatile factor that regulates alternative splicing of a variety of pre-mRNAs.

Figures