1. Academic Validation
  2. Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA

Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA

  • EMBO J. 2004 Aug 18;23(16):3314-24. doi: 10.1038/sj.emboj.7600316.
Yunhe Bao 1 Kasey Konesky Young-Jun Park Simona Rosu Pamela N Dyer Danny Rangasamy David J Tremethick Paul J Laybourn Karolin Luger
Affiliations

Affiliation

  • 1 Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.
Abstract

H2A.Bbd is an unusual histone variant whose sequence is only 48% conserved compared to major H2A. The major sequence differences are in the docking domain that tethers the H2A-H2B dimer to the (H3-H4)(2) tetramer; in addition, the C-terminal tail is absent in H2A.Bbd. We assembled nucleosomes in which H2A is replaced by H2A.Bbd (Bbd-NCP), and found that Bbd-NCP had a more relaxed structure in which only 118+/-2 bp of DNA is protected against digestion with micrococcal nuclease. The absence of fluorescence resonance energy transfer between the ends of the DNA in Bbd-NCP indicates that the distance between the DNA ends is increased significantly. The Bbd docking domain is largely responsible for this behavior, as shown by domain-swap experiments. Bbd-containing nucleosomal arrays repress transcription from a natural promoter, and this repression can be alleviated by transcriptional activators Tax and CREB. The structural properties of Bbd-NCP described here have important implications for the in vivo function of this histone variant and are consistent with its proposed role in transcriptionally active chromatin.

Figures