1. Academic Validation
  2. Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway

Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway

  • J Neurosci. 2005 Jun 29;25(26):6156-66. doi: 10.1523/JNEUROSCI.1017-05.2005.
Zhe-Yu Chen 1 Alessandro Ieraci Henry Teng Henning Dall Chui-Xiang Meng Daniel G Herrera Anders Nykjaer Barbara L Hempstead Francis S Lee
Affiliations

Affiliation

  • 1 Department of Psychiatry, Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA.
Abstract

Brain-derived neurotrophic factor (BDNF), after activity-dependent secretion from neurons, modulates critical nervous system functions. Recently, a variant in the human bdnf gene, resulting in a valine to methionine substitution in the prodomain, has been shown to lead to defective regulated secretion from neurons and memory impairment. Here, we report a novel function for a Vps10p domain protein, sortilin, in controlling BDNF sorting to the regulated secretory pathway. Sortilin interacts specifically with BDNF in a region encompassing the methionine substitution and colocalizes with BDNF in secretory granules in neurons. A truncated form of sortilin causes BDNF missorting to the constitutive secretory pathway without affecting neurotrophin-4 (NT-4) secretion. In addition, sortilin small interfering RNA introduced into primary neurons also led to BDNF missorting from the regulated to the constitutive secretory pathway. Together, these data suggest a mechanism to understand the defect associated with variant BDNF and provide a framework, based on divergent presynaptic regulation of sorting to secretory pathways, to explain how two ligands for tropomyosin-related kinase B, BDNF and NT-4, can mediate diverse biological responses.

Figures