1. Academic Validation
  2. Ca2+-calmodulin-dependent myosin light chain kinase is essential for activation of TRPC5 channels expressed in HEK293 cells

Ca2+-calmodulin-dependent myosin light chain kinase is essential for activation of TRPC5 channels expressed in HEK293 cells

  • J Physiol. 2006 Jan 15;570(Pt 2):219-35. doi: 10.1113/jphysiol.2005.097998.
Shunichi Shimizu 1 Takashi Yoshida Minoru Wakamori Masakazu Ishii Takaharu Okada Masami Takahashi Minoru Seto Katsuhiko Sakurada Yuji Kiuchi Yasuo Mori
Affiliations

Affiliation

  • 1 Department of Pathophysiology, School of Pharmaceutical Sciences, Showa University, Shinagawa-ku, Tokyo, Japan. [email protected]
Abstract

Mammalian homologues of Drosophila transient receptor potential (TRP) proteins are responsible for receptor-activated Ca(2+) influx in vertebrate cells. We previously reported the involvement of intracellular Ca(2+) in the receptor-mediated activation of mammalian canonical transient receptor potential 5 (TRPC5) channels. Here we investigated the role of Calmodulin, an important sensor of changes in intracellular Ca(2+), and its downstream cascades in the activation of recombinant TRPC5 channels in human embryonic kidney (HEK) 293 cells. Ca(2+) entry through TRPC5 channels, induced upon stimulation of the G-protein-coupled ATP receptor, was abolished by treatment with W-13, an inhibitor of Calmodulin. ML-9 and wortmannin, inhibitors of Ca(2+)-calmodulin-dependent Myosin light chain kinase (MLCK), and the expression of a dominant-negative mutant of MLCK inhibited the TRPC5 channel activity, revealing an essential role of MLCK in maintaining TRPC5 channel activity. It is important to note that ML-9 impaired the plasma membrane localization of TRPC5 channels. Furthermore, TRPC5 channel activity measured using the whole-cell patch-clamp technique was inhibited by ML-9, whereas TRPC5 channel activity observed in the cell-excised, inside-out patch was unaffected by ML-9. An antibody that recognizes phosphorylated Myosin light chain (MLC) revealed that the basal level of phosphorylated MLC under unstimulated conditions was reduced by ML-9 in HEK293 cells. These findings strongly suggest that intracellular Ca(2+)-calmodulin constitutively activates MLCK, thereby maintaining TRPC5 channel activity through the promotion of plasma membrane TRPC5 channel distribution under the control of phosphorylation/dephosphorylation equilibrium of MLC.

Figures