1. Academic Validation
  2. The functional evaluation of human peptide/histidine transporter 1 (hPHT1) in transiently transfected COS-7 cells

The functional evaluation of human peptide/histidine transporter 1 (hPHT1) in transiently transfected COS-7 cells

  • Eur J Pharm Sci. 2006 Apr;27(5):533-42. doi: 10.1016/j.ejps.2005.09.014.
Rajinder K Bhardwaj 1 Dea Herrera-Ruiz Nesreen Eltoukhy Maha Saad Gregory T Knipp
Affiliations

Affiliation

  • 1 Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8022, USA.
Abstract

Recently, the expression of the human peptide/histidine transporter (hPHT1, SLC15A4) mRNA was observed in the GI tract and in Caco-2 cells, suggesting that it may participate in the intestinal absorption of peptide-based agents. This study aims to elucidate the: (i) protein expression pattern of hPHT1 (SLC15A4) in human small intestine; (ii) cloning of the hPHT1 full-length sequence; (iii) functional characterization of hPHT1 in transiently transfected COS-7 cells. The expression of hPHT1 was measured using Western blot and immunohistochemical analysis. The hPHT1 full-sequence was amplified from BeWo cells, inserted into the pcDNA3.1-V5/His TOPO plasmid and transiently transfected into COS-7 cells to investigate the uptake kinetics of [3H]histidine and [3H]carnosine. Time, pH and sodium-dependent uptake studies were performed in mock (empty vector) and hPHT1-COS-7 cells. Results demonstrated hPHT1 protein expression in different intestinal regions. Histidine and carnosine uptake was linear in hPHT1-COS-7 cells over 15 min and was found to be pH-dependent. These substrates and valacyclovir showed significantly higher uptake at pH 5.0 in the hPHT1 transients when contrasted to the mock COS-7 cells, whereas glycylsarcosine uptake was significantly lower and unaffected by pH. Other di- and tripeptides also showed affinity for hPHT1. This study presents the initial functional characterization, the protein expression of the hPHT1 transporter and provides insight into a potentially different route for increasing peptide and peptide-based drug transport.

Figures