1. Academic Validation
  2. Combinations of cyclophilin inhibitor NIM811 with hepatitis C Virus NS3-4A Protease or NS5B polymerase inhibitors enhance antiviral activity and suppress the emergence of resistance

Combinations of cyclophilin inhibitor NIM811 with hepatitis C Virus NS3-4A Protease or NS5B polymerase inhibitors enhance antiviral activity and suppress the emergence of resistance

  • Antimicrob Agents Chemother. 2008 Sep;52(9):3267-75. doi: 10.1128/AAC.00498-08.
Joanna E Mathy 1 Sue Ma Teresa Compton Kai Lin
Affiliations

Affiliation

  • 1 Novartis Institutes for Biomedical Research, Inc, Cambridge, Massachusetts 02139, USA.
Abstract

Chronic hepatitis C virus (HCV) Infection remains a major global health burden while current interferon-based therapy is suboptimal. Efforts to develop more effective Antiviral agents mainly focus on two viral targets: NS3-4A protease and NS5B polymerase. However, resistant mutants against these viral specific inhibitors emerge quickly both in vitro and in patients, particularly in the case of monotherapy. An alternative and complementary strategy is to target host factors such as cyclophilins that are also essential for viral replication. Future HCV therapies will most likely be combinations of multiple drugs of different mechanisms to maximize Antiviral activity and to suppress the emergence of resistance. Here, the effects of combining a host cyclophilin inhibitor NIM811 with other viral specific inhibitors were investigated in vitro using HCV replicon. All of the combinations led to more pronounced Antiviral effects than any single agent, with no significant increase of cytotoxicity. Moreover, the combination of NIM811 with a nucleoside (NM107) or a non-nucleoside (thiophene-2-carboxylic acid) polymerase inhibitor was synergistic, while the combination with a protease inhibitor (BILN2061) was additive. Resistant clones were selected in vitro with these inhibitors. Interestingly, it was much more difficult to develop resistance against NIM811 than viral specific inhibitors. No cross-resistance was observed among these inhibitors. Most notably, NIM811 was highly effective in blocking the emergence of resistance when used in combination with viral protease or polymerase inhibitors. Taken together, these results illustrate the significant advantages of combining inhibitors targeting both viral and host factors as key components of future HCV therapies.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-10468
    99.23%, HCV NS5B Polymerase Inhibitor
    HCV