1. Academic Validation
  2. Inhibition of GSK3 phosphorylation of beta-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6

Inhibition of GSK3 phosphorylation of beta-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6

  • PLoS One. 2009;4(3):e4926. doi: 10.1371/journal.pone.0004926.
Geng Wu 1 He Huang Jose Garcia Abreu Xi He
Affiliations

Affiliation

  • 1 F M Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA. [email protected]
Abstract

The Wnt/beta-catenin signaling pathway plays essential roles in cell proliferation and differentiation, and deregulated beta-catenin protein levels lead to many types of human cancers. On activation by Wnt, the Wnt co-receptor LDL receptor related protein 6 (LRP6) is phosphorylated at multiple conserved intracellular PPPSPXS motifs by glycogen synthase kinase 3 (GSK3) and Casein Kinase 1 (CK1), resulting in recruitment of the scaffolding protein Axin to LRP6. As a result, beta-catenin phosphorylation by GSK3 is inhibited and beta-catenin protein is stabilized. However, how LRP6 phosphorylation and the ensuing LRP6-Axin interaction lead to the inhibition of beta-catenin phosphorylation by GSK3 is not fully understood. In this study, we reconstituted Axin-dependent beta-catenin phosphorylation by GSK3 and CK1 in vitro using recombinant proteins, and found that the phosphorylated PPPSPXS Peptides directly inhibit beta-catenin phosphorylation by GSK3 in a sequence and phosphorylation-dependent manner. This inhibitory effect of phosphorylated PPPSPXS motifs is direct and specific for GSK3 phosphorylation of beta-catenin at Ser33/Ser37/Thr41 but not for CK1 phosphorylation of beta-catenin at Ser45, and is independent of Axin function. We also show that a phosphorylated PPPSPXS peptide is able to activate Wnt/beta-catenin signaling and to induce axis duplication in Xenopus embryos, presumably by inhibition of GSK3 in vivo. Based on these observations, we propose a working model that Axin recruitment to the phosphorylated LRP6 places GSK3 in the vicinity of multiple phosphorylated PPPSPXS motifs, which directly inhibit GSK3 phosphorylation of beta-catenin. This model provides a possible mechanism to account, in part, for inhibition of beta-catenin phosphorylation by Wnt-activated LRP6.

Figures