1. Academic Validation
  2. Serine hydroxymethyltransferase: a model enzyme for mechanistic, structural, and evolutionary studies

Serine hydroxymethyltransferase: a model enzyme for mechanistic, structural, and evolutionary studies

  • Biochim Biophys Acta. 2011 Nov;1814(11):1489-96. doi: 10.1016/j.bbapap.2010.10.010.
Rita Florio 1 Martino Luigi di Salvo Mirella Vivoli Roberto Contestabile
Affiliations

Affiliation

  • 1 Departimento di Scienze Biochimiche A. Rossi Fanelli and Instituto Pasteur- Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy.
Abstract

Serine hydroxymethyltransferase is a ubiquitous representative of the family of fold type I, pyridoxal 5'-phosphate-dependent enzymes. The reaction catalyzed by this Enzyme, the reversible transfer of the Cβ of serine to tetrahydropteroylglutamate, represents a link between amino acid and folates metabolism and operates as a major source of one-carbon units for several essential biosynthetic processes. Serine hydroxymethyltransferase has been intensively investigated because of the interest aroused by the complex mechanism of the hydroxymethyltransferase reaction and its broad substrate and reaction specificity. Although the increasing availability of crystallographic data and the characterization of several site-specific mutants helped in understanding previous functional and structural studies, they also represent the starting point of novel investigations. This review will focus on recently highlighted catalytic, structural, and evolutionary aspects of serine hydroxymethyltransferase. This article is part of a Special Issue entitled: Pyridoxal phosphate Enzymology.

Figures