1. Academic Validation
  2. Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome

Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome

  • Nat Genet. 2012 Feb 26;44(4):445-9, S1. doi: 10.1038/ng.1105.
Jeroen K J Van Houdt 1 Beata Anna Nowakowska Sérgio B Sousa Barbera D C van Schaik Eve Seuntjens Nelson Avonce Alejandro Sifrim Omar A Abdul-Rahman Marie-José H van den Boogaard Armand Bottani Marco Castori Valérie Cormier-Daire Matthew A Deardorff Isabel Filges Alan Fryer Jean-Pierre Fryns Simone Gana Livia Garavelli Gabriele Gillessen-Kaesbach Bryan D Hall Denise Horn Danny Huylebroeck Jakub Klapecki Malgorzata Krajewska-Walasek Alma Kuechler Matthew A Lines Saskia Maas Kay D Macdermot Shane McKee Alex Magee Stella A de Man Yves Moreau Fanny Morice-Picard Ewa Obersztyn Jacek Pilch Elizabeth Rosser Nora Shannon Irene Stolte-Dijkstra Patrick Van Dijck Catheline Vilain Annick Vogels Emma Wakeling Dagmar Wieczorek Louise Wilson Orsetta Zuffardi Antoine H C van Kampen Koenraad Devriendt Raoul Hennekam Joris Robert Vermeesch
Affiliations

Affiliation

  • 1 Center for Human Genetics, Catholic University Leuven, University Hospital Gasthuisberg, Leuven, Belgium.
Abstract

Nicolaides-Baraitser syndrome (NBS) is characterized by sparse hair, distinctive facial morphology, distal-limb anomalies and intellectual disability. We sequenced the exomes of ten individuals with NBS and identified heterozygous variants in SMARCA2 in eight of them. Extended molecular screening identified nonsynonymous SMARCA2 mutations in 36 of 44 individuals with NBS; these mutations were confirmed to be de novo when parental samples were available. SMARCA2 encodes the core catalytic unit of the SWI/SNF ATP-dependent chromatin remodeling complex that is involved in the regulation of gene transcription. The mutations cluster within sequences that encode ultra-conserved motifs in the catalytic ATPase region of the protein. These alterations likely do not impair SWI/SNF complex assembly but may be associated with disrupted ATPase activity. The identification of SMARCA2 mutations in humans provides insight into the function of the Snf2 helicase family.

Figures