1. Academic Validation
  2. Improved Total Synthesis of Tubulysins and Design, Synthesis, and Biological Evaluation of New Tubulysins with Highly Potent Cytotoxicities against Cancer Cells as Potential Payloads for Antibody-Drug Conjugates

Improved Total Synthesis of Tubulysins and Design, Synthesis, and Biological Evaluation of New Tubulysins with Highly Potent Cytotoxicities against Cancer Cells as Potential Payloads for Antibody-Drug Conjugates

  • J Am Chem Soc. 2018 Mar 14;140(10):3690-3711. doi: 10.1021/jacs.7b12692.
K C Nicolaou 1 Rohan D Erande 1 Jun Yin 1 Dionisios Vourloumis 1 2 Monette Aujay 3 Joseph Sandoval 3 Stefan Munneke 3 Julia Gavrilyuk 3
Affiliations

Affiliations

  • 1 Department of Chemistry, BioScience Research Collaborative , Rice University , 6100 Main Street , Houston , Texas 77005 , United States.
  • 2 Laboratory of Chemical Biology of Natural Products & Designed Molecules , N.C.S.R "Demokritos" , 153 10 Agia Paraskevi , Athens , Greece.
  • 3 AbbVie Stemcentrx, LLC , 450 East Jamie Court , South San Francisco , California 94080 , United States.
Abstract

Improved, streamlined total syntheses of natural tubulysins such as V (Tb45) and U (Tb46) and pretubulysin D (PTb-D43), and their application to the synthesis of designed tubulysin analogues (Tb44, PTb-D42, PTb-D47-PTb-D49, and Tb50-Tb120), are described. Cytotoxicity evaluation of the synthesized compounds against certain Cancer cell lines revealed a number of novel analogues with exceptional potencies [e.g., Tb111: IC50 = 40 pM against MES SA (uterine sarcoma) cell line; IC50 = 6 pM against HEK 293T (human embryonic kidney Cancer) cell line; and IC50 = 1.54 nM against MES SA DX (MES SA with marked multidrug resistance) cell line]. These studies led to a set of valuable structure-activity relationships that provide guidance to further molecular design, synthesis, and biological evaluation studies. The extremely potent cytotoxic compounds discovered in these investigations are highly desirable as potential payloads for antibody-drug conjugates and other drug delivery systems for personalized targeted Cancer chemotherapies.

Figures
Products