1. Academic Validation
  2. The intellectual disability-associated CAMK2G p.Arg292Pro mutation acts as a pathogenic gain-of-function

The intellectual disability-associated CAMK2G p.Arg292Pro mutation acts as a pathogenic gain-of-function

  • Hum Mutat. 2018 Dec;39(12):2008-2024. doi: 10.1002/humu.23647.
Martina Proietti Onori 1 2 Balwina Koopal 1 David B Everman 3 Jessica D Worthington 3 Julie R Jones 3 Melissa A Ploeg 1 Edwin Mientjes 1 2 Bregje W van Bon 4 5 Tjitske Kleefstra 4 5 Howard Schulman 6 Steven A Kushner 2 7 Sébastien Küry 8 9 Ype Elgersma 1 2 Geeske M van Woerden 1 2
Affiliations

Affiliations

  • 1 Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands.
  • 2 ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, the Netherlands.
  • 3 Greenwood Genetic Center, Greenwood, SC, USA.
  • 4 Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
  • 5 Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands.
  • 6 Allosteros Therapeutics, Sunnyvale, CA, USA.
  • 7 Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands.
  • 8 CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, Nantes, France.
  • 9 l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France.
Abstract

The abundantly expressed calcium/calmodulin-dependent protein kinase II (CAMK2), alpha (CAMK2A), and beta (CAMK2B) isoforms are essential for learning and memory formation. Recently, a de novo candidate mutation (p.Arg292Pro) in the gamma isoform of CAMK2 (CAMK2G) was identified in a patient with severe intellectual disability (ID), but the mechanism(s) by which this mutation causes ID is unknown. Here, we identified a second, unrelated individual, with a de novo CAMK2G p.Arg292Pro mutation, and used in vivo and in vitro assays to assess the impact of this mutation on CAMK2G and neuronal function. We found that knockdown of CAMK2G results in inappropriate precocious neuronal maturation. We further found that the CAMK2G p.Arg292Pro mutation acts as a highly pathogenic gain-of-function mutation, leading to increased phosphotransferase activity and impaired neuronal maturation as well as impaired targeting of the nuclear CAMK2G isoform. Silencing the catalytic site of the CAMK2G p.Arg292Pro protein reversed the pathogenic effect of the p.Arg292Pro mutation on neuronal maturation, without rescuing its nuclear targeting. Taken together, our results reveal an indispensable function of CAMK2G in neurodevelopment and indicate that the CAMK2G p.Arg292Pro protein acts as a pathogenic gain-of-function mutation, through constitutive activity toward cytosolic targets, rather than impaired targeting to the nucleus.

Keywords

calcium/calmodulin-dependent protein kinase type 2; functional genomics; in utero electroporation; intellectual disability; neurodevelopmental disorders; neuronal arborization.

Figures