1. Academic Validation
  2. Role of the P2X7 receptor in inflammation-mediated changes in the osteogenesis of periodontal ligament stem cells

Role of the P2X7 receptor in inflammation-mediated changes in the osteogenesis of periodontal ligament stem cells

  • Cell Death Dis. 2019 Jan 8;10(1):20. doi: 10.1038/s41419-018-1253-y.
Xin-Yue Xu 1 Xiao-Tao He 1 Jia Wang 1 Xuan Li 1 Yu Xia 1 Yi-Zhou Tan 1 Fa-Ming Chen 2
Affiliations

Affiliations

  • 1 State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
  • 2 State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China. [email protected].
Abstract

Accumulating evidence indicates that the pluripotency of periodontal ligament stem cells (PDLSCs) is compromised under inflammatory conditions; however, the underlying mechanisms remain largely unexplored. In this study, we hypothesize that the P2X7 receptor (P2X7R) is a key molecule linked to inflammation-associated impairment of PDLSCs. We first investigated P2X7R expression in PDLSCs under normal and inflammatory conditions and then determined the effect of a P2X7R agonist (BzATP) or antagonist (BBG) on PDLSC osteogenesis under various conditions. Gene-modified PDLSCs were used to further examine the role of P2X7R and the signaling pathway underlying P2X7R-enhanced osteogenesis. We found that inflammatory conditions decreased P2X7R expression in PDLSCs and reduced osteogenesis in these cells. In addition, activation of P2X7R by BzATP or overexpression of P2X7R via gene transduction reversed the inflammation-mediated decrease in PDLSC osteogenic differentiation. When selected osteogenesis-related signaling molecules were screened, the PI3K-AKT-mTOR pathway was identified as potentially involved in P2X7R-enhanced PDLSC osteogenesis. Our data reveal a crucial role for P2X7R in PDLSC osteogenesis under inflammatory conditions, suggesting a new therapeutic target to reverse or rescue inflammation-mediated changes in PDLSCs for future mainstream therapeutic uses.

Figures
Products