1. Academic Validation
  2. CRISPR knockout screen implicates three genes in lysosome function

CRISPR knockout screen implicates three genes in lysosome function

  • Sci Rep. 2019 Jul 3;9(1):9609. doi: 10.1038/s41598-019-45939-w.
Guy M Lenk 1 Young N Park 2 Rosemary Lemons 2 Emma Flynn 2 Margaret Plank 2 Christen M Frei 2 Michael J Davis 3 Brian Gregorka 3 Joel A Swanson 3 Miriam H Meisler 2 Jacob O Kitzman 4
Affiliations

Affiliations

  • 1 Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109-5618, USA. [email protected].
  • 2 Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109-5618, USA.
  • 3 Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109-5618, USA.
  • 4 Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109-5618, USA. [email protected].
Abstract

Defective biosynthesis of the phospholipid PI(3,5)P2 underlies neurological disorders characterized by cytoplasmic accumulation of large lysosome-derived vacuoles. To identify novel genetic causes of lysosomal vacuolization, we developed an assay for enlargement of the lysosome compartment that is amenable to cell sorting and pooled screens. We first demonstrated that the enlarged vacuoles that accumulate in fibroblasts lacking FIG4, a PI(3,5)P2 biosynthetic factor, have a hyperacidic pH compared to normal cells'. We then carried out a genome-wide knockout screen in human HAP1 cells for accumulation of acidic vesicles by FACS sorting. A pilot screen captured fifteen genes, including VAC14, a previously identified cause of endolysosomal vacuolization. Three genes not previously associated with lysosome dysfunction were selected to validate the screen: C10orf35, LRRC8A, and MARCH7. We analyzed two clonal knockout cell lines for each gene. All of the knockout lines contained enlarged acidic vesicles that were positive for LAMP2, confirming their endolysosomal origin. This assay will be useful in the future for functional evaluation of patient variants in these genes, and for a more extensive genome-wide screen for genes required for endolysosome function. This approach may also be adapted for drug screens to identify small molecules that rescue endolysosomal vacuolization.

Figures