1. Academic Validation
  2. Inhibition of a triggering receptor expressed on myeloid cells-1 (TREM-1) with an extracellular cold-inducible RNA-binding protein (eCIRP)-derived peptide protects mice from intestinal ischemia-reperfusion injury

Inhibition of a triggering receptor expressed on myeloid cells-1 (TREM-1) with an extracellular cold-inducible RNA-binding protein (eCIRP)-derived peptide protects mice from intestinal ischemia-reperfusion injury

  • Surgery. 2020 Sep;168(3):478-485. doi: 10.1016/j.surg.2020.04.010.
Naomi-Liza Denning 1 Monowar Aziz 2 Mahendar Ochani 3 Jose M Prince 4 Ping Wang 5
Affiliations

Affiliations

  • 1 Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY; Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY.
  • 2 Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY.
  • 3 Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY.
  • 4 Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY; Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY; Cohen Children's Medical Center at Hofstra/Northwell Health, New Hyde Park, NY.
  • 5 Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY; Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY. Electronic address: [email protected].
Abstract

Background: Intestinal ischemia-reperfusion injury results in morbidity and mortality from both local injury and systemic inflammation and acute lung injury. Extracellular cold-inducible RNA-binding protein is a damage associated molecular pattern that fuels systemic inflammation and potentiates acute lung injury. We recently discovered a triggering receptor expressed on myeloid cells-1 serves as a novel receptor for extracellular cold-inducible RNA-binding protein. We developed a 7-aa peptide, named M3, derived from the cold-inducible RNA-binding protein, which interferes with cold-inducible RNA-binding protein's binding to a triggering receptor expressed on myeloid cells-1. Here, we hypothesized that M3 protects mice against intestinal ischemia-reperfusion injury.

Methods: Intestinal ischemia was induced in C57BL/6 mice via clamping of the superior mesenteric artery for 60 minutes. At reperfusion, mice were treated intraperitoneally with M3 (10 mg/kg body weight) or normal saline vehicle. Mice were killed 4 hours after reperfusion and blood and lungs were collected for various analysis. A 24-hours survival after intestinal ischemia-reperfusion was assessed.

Results: Serum levels of organ injury markers aspartate aminotransferase, alanine aminotransferase, Lactate Dehydrogenase, and lactate were increased with intestinal ischemia-reperfusion, while treatment with M3 significantly decreased their levels. Serum, intestinal, and lung levels of proinflammatory cytokines and chemokines were also increased by intestinal ischemia-reperfusion, and treatment with M3 significantly reduced these values. Intestinal ischemia-reperfusion caused significant histological intestinal and lung injuries, which were mitigated by M3. Treatment with M3 improved the survival from 40% to 80% after intestinal ischemia-reperfusion.

Conclusion: Inhibition of triggering receptor expressed on myeloid cells-1 by an extracellular cold-inducible RNA-binding protein-derived small peptide (M3) decreased inflammation, reduced lung injury, and improved survival in intestinal ischemia-reperfusion injury. Thus, blocking the extracellular cold-inducible RNA-binding protein-triggering receptor expressed on myeloid cells-1 interaction is a promising therapeutic avenue for mitigating intestinal ischemia-reperfusion injury.

Figures
Products