1. Academic Validation
  2. Enhanced Sulfite-Selective Sensing and Cell Imaging with Fluorescent Nanoreactors Containing a Ratiometric Lipid Peroxidation Sensor

Enhanced Sulfite-Selective Sensing and Cell Imaging with Fluorescent Nanoreactors Containing a Ratiometric Lipid Peroxidation Sensor

  • Anal Chem. 2021 Aug 31;93(34):11758-11764. doi: 10.1021/acs.analchem.1c02167.
Jing Li 1 Xueqing Ma 1 2 Wei Yang 1 Chao Guo 1 Jingying Zhai 2 Xiaojiang Xie 1
Affiliations

Affiliations

  • 1 Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
  • 2 Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China.
Abstract

The detection of SO2 and its derivatives is indispensable for monitoring atmospheric, water quality, and biological fluctuation of oxidative stress and metabolism of biothiols within native cellular contexts. In this article, the brush copolymer nanoreactors containing amine-terminated PDMS were used to encapsulate the fluorescent indicator C11-BDP, forming sulfite-sensitive nanoreactors (ssNRs). Surprisingly, the ssNRs were found to be highly selective to sulfite over a range of reactive oxygen/nitrogen/sulfur species and anions, which was not observed with freely dissolved indicators. The ssNRs showed a rapid response (t95 = 65 s), an excellent detection limit (0.7 μM), and a very high sensitivity (ca. 1000-fold ratiometric intensity change) to sulfite. For cellular studies, the ssNRs exhibited negligible toxicity and could be endocytosed into endosomes and lysosomes. Finally, the ssNRs allowed us to visualize the different responses of three different types of cells (pre-adipocytes, RAW264.7, and HeLa cells) to external stimuli in the culture media with sulfites and lipopolysaccharides.

Figures
Products