1. Academic Validation
  2. Novel quinolin-2(1H)-one analogues as potential fungicides targeting succinate dehydrogenase: design, synthesis, inhibitory evaluation and molecular modeling

Novel quinolin-2(1H)-one analogues as potential fungicides targeting succinate dehydrogenase: design, synthesis, inhibitory evaluation and molecular modeling

  • Pest Manag Sci. 2023 Oct;79(10):3425-3438. doi: 10.1002/ps.7332.
Jingwen Wang 1 Tong Lu 1 Tingting Xiao 1 Wei Cheng 1 Wenjing Jiang 1 Yingkun Yan 1 Xiaorong Tang 1
Affiliations

Affiliation

  • 1 School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China.
Abstract

Background: Succinate dehydrogenase is an important target of fungicides. Succinate dehydrogenase inhibitors (SDHIs) have widely been used to combat destructive plant pathogenic fungi because they possess efficient and broad-spectrum Antifungal activities and as well as unique mode of action. The research and development of novel SDHIs have been ongoing.

Results: Thirty-six novel quinolin-2(1H)-one derivatives were designed, synthesized and characterized. The single crystal structure of compound 3c was determined through the X-ray diffraction of single crystals. The bioassay results displayed that most compounds had good Antifungal activities at 16 μg mL-1 against Rhizoctonia cerealis, Erysiphe graminis, Botrytis cinerea, Penicillium italicum and Phytophthora infestans. Compounds 6o, 6p and 6r had better Antifungal activities than the commercialized fungicide pyraziflumid against Botrytis cinerea. Their half maximal effective concentration (EC50 ) values were 0.398, 0.513, 0.205 and 0.706 μg mL-1 , respectively. Moreover, the inhibiting activities of the bioactive compounds were tested against succinate dehydrogenase. The results indicated that they possessed outstanding activities. Compounds 6o, 6p and 6r also exhibited better inhibiting activities than pyraziflumid against succinate dehydrogenase. Their half maximal inhibitory concentration (IC50 ) values were 0.450, 0.672, 0.232 and 0.858 μg mL-1 , respectively. The results of molecular dynamic (MD) simulations indicated that compound 6r displayed stronger affinity to succinate dehydrogenase than pyraziflumid.

Conclusion: The results of the present study displayed that quinolin-2(1H)-one derivative could be one scaffold of potential SDHIs and will provide some valuable information for the research and development of new SDHIs. © 2022 Society of Chemical Industry.

Keywords

inhibitory activity; molecular modeling; quinolin-2(1H)-one derivatives; succinate dehydrogenase inhibitor.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-149653
    Succinate Dehydrogenase Inhibitor