1. Academic Validation
  2. The Beneficial Effects of Pine Nuts and Its Major Fatty Acid, Pinolenic Acid, on Inflammation and Metabolic Perturbations in Inflammatory Disorders

The Beneficial Effects of Pine Nuts and Its Major Fatty Acid, Pinolenic Acid, on Inflammation and Metabolic Perturbations in Inflammatory Disorders

  • Int J Mol Sci. 2023 Jan 6;24(2):1171. doi: 10.3390/ijms24021171.
Rabaa Takala 1 2 Dipak P Ramji 2 Ernest Choy 1 3
Affiliations

Affiliations

  • 1 Division of Infection and Immunity, Tenovus Building, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
  • 2 Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
  • 3 Department of Rheumatology, Heath Park, University Hospital of Wales, Cardiff CF14 4XW, UK.
Abstract

Inflammatory disorders such as atherosclerosis, diabetes and rheumatoid arthritis are regulated by cytokines and other inflammatory mediators. Current treatments for these conditions are associated with significant side effects and do not completely suppress inflammation. The benefits of diet, especially the role of specific components, are poorly understood. Polyunsaturated fatty acids (PUFAs) have several beneficial health effects. The majority of studies on PUFAs have been on omega-3 fatty acids. This review will focus on a less studied fatty acid, pinolenic acid (PNLA) from pine nuts, which typically constitutes up to 20% of its total fatty acids. PNLA is emerging as a dietary PUFA and a promising supplement in the prevention of inflammatory disorders or as an alternative therapy. Some studies have shown the health implications of pine nuts oil (PNO) and PNLA in weight reduction, lipid-lowering and anti-diabetic actions as well as in suppression of cell invasiveness and motility in Cancer. However, few reviews have specifically focused on the biological and anti-inflammatory effects of PNLA. Furthermore, in recent bioinformatic studies on human samples, the expression of many mRNAs and MicroRNAs was regulated by PNLA indicating potential transcriptional and post-transcriptional regulation of inflammatory and metabolic processes. The aim of this review is to summarize, highlight, and evaluate research findings on PNO and PNLA in relation to potential anti-inflammatory benefits and beneficial metabolic changes. In this context, the focus of the review is on the potential actions of PNLA on inflammation along with modulation of lipid metabolism and oxidative stress based on data from both in vitro and in vivo experiments, and human findings, including gene expression analysis.

Keywords

gene expression; inflammatory cytokines; microRNA; oxidative stress; pine nuts oil; pinolenic acid; polyunsaturated fatty acids; protein-coding genes.

Figures
Products