1. Academic Validation
  2. Simultaneous inhibition of endocytic recycling and lysosomal fusion sensitizes cells and tissues to oligonucleotide therapeutics

Simultaneous inhibition of endocytic recycling and lysosomal fusion sensitizes cells and tissues to oligonucleotide therapeutics

  • Nucleic Acids Res. 2023 Feb 2;gkad023. doi: 10.1093/nar/gkad023.
Brendan T Finicle 1 Kazumi H Eckenstein 1 Alexey S Revenko 2 Brooke A Anderson 2 W Brad Wan 2 Alison N McCracken 3 Daniel Gil 3 David A Fruman 4 Stephen Hanessian 5 6 Punit P Seth 2 Aimee L Edinger 1
Affiliations

Affiliations

  • 1 Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
  • 2 Ionis Pharmaceuticals, Carlsbad, CA, USA.
  • 3 Siege Pharmaceuticals, Irvine, CA, USA.
  • 4 Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA.
  • 5 Department of Chemistry, Université de Montréal, Montréal, QC, Canada.
  • 6 Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
Abstract

Inefficient endosomal escape remains the primary barrier to the broad application of oligonucleotide therapeutics. Liver uptake after systemic administration is sufficiently robust that a therapeutic effect can be achieved but targeting extrahepatic tissues remains challenging. Prior attempts to improve oligonucleotide activity using small molecules that increase the leakiness of endosomes have failed due to unacceptable toxicity. Here, we show that the well-tolerated and orally bioavailable synthetic sphingolipid analog, SH-BC-893, increases the activity of Antisense Oligonucleotides (ASOs) and small interfering RNAs (siRNAs) up to 200-fold in vitro without permeabilizing endosomes. SH-BC-893 treatment trapped endocytosed Oligonucleotides within extra-lysosomal compartments thought to be more permeable due to frequent membrane fission and fusion events. Simultaneous disruption of ARF6-dependent endocytic recycling and PIKfyve-dependent lysosomal fusion was necessary and sufficient for SH-BC-893 to increase non-lysosomal oligonucleotide levels and enhance their activity. In mice, oral administration of SH-BC-893 increased ASO potency in the liver by 15-fold without toxicity. More importantly, SH-BC-893 enabled target RNA knockdown in the CNS and lungs of mice treated subcutaneously with cholesterol-functionalized duplexed Oligonucleotides or unmodified ASOs, respectively. Together, these results establish the feasibility of using a small molecule that disrupts endolysosomal trafficking to improve the activity of Oligonucleotides in extrahepatic tissues.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-136151
    99.41%, Oligonucleotide Enhancer