1. Academic Validation
  2. Establishment of a high-fidelity patient-derived xenograft model for cervical cancer enables the evaluation of patient's response to conventional and novel therapies

Establishment of a high-fidelity patient-derived xenograft model for cervical cancer enables the evaluation of patient's response to conventional and novel therapies

  • J Transl Med. 2023 Sep 9;21(1):611. doi: 10.1186/s12967-023-04444-5.
Liting Liu # 1 2 Min Wu # 1 2 Anni Huang 1 2 Chun Gao 1 2 Yifan Yang 1 2 Hong Liu 1 2 Han Jiang 3 Long Yu 3 Yafei Huang 4 Hui Wang 5 6 7
Affiliations

Affiliations

  • 1 Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • 2 Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • 3 Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • 4 Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. [email protected].
  • 5 Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. [email protected].
  • 6 Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. [email protected].
  • 7 Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. [email protected].
  • # Contributed equally.
Abstract

Background: Recurrent or metastatic cervical Cancer (r/m CC) often has poor prognosis owing to its limited treatment options. The development of novel therapeutic strategies has been hindered by the lack of preclinical models that accurately reflect the biological and genomic heterogeneity of cervical Cancer (CC). Herein, we aimed to establish a large patient-derived xenograft (PDX) biobank for CC, evaluate the consistency of the biologic indicators between PDX and primary tumor tissues of patients, and explore its utility for assessing patient's response to conventional and novel therapies.

Methods: Sixty-nine fresh CC tumor tissues were implanted directly into immunodeficient mice to establish PDX models. The concordance of the PDX models with their corresponding primary tumors (PTs) was compared based on the clinical pathological features, protein biomarker levels, and genomic features through hematoxylin & eosin staining, immunohistochemistry, and whole exome sequencing, respectively. Moreover, the clinical information of CC patients, RNA transcriptome and immune phenotyping of primary tumors were integrated to identify the potential parameters that could affect the success of xenograft engraftment. Subsequently, PDX model was evaluated for its capacity to mirror patient's response to chemotherapy. Finally, PDX model and PDX-derived organoid (PDXO) were utilized to evaluate the therapeutic efficacy of neratinib and adoptive cell therapy (ACT) combination strategy for CC patients with human epidermal growth factor receptor 2 (HER2) mutation.

Results: We established a PDX biobank for CC with a success rate of 63.8% (44/69). The primary features of established PDX tumors, including clinicopathological features, the expression levels of protein biomarkers including Ki67, α-smooth muscle actin, and p16, and genomics, were highly consistent with their PTs. Furthermore, xenograft engraftment was likely influenced by the primary tumor size, the presence of follicular helper T cells and the expression of cell adhesion-related genes in primary tumor tissue. The CC derived PDX models were capable of recapitulating the patient's response to chemotherapy. In a PDX model, a novel therapeutic strategy, the combination of ACT and neratinib, was shown to effectively inhibit the growth of PDX tumors derived from CC patients with HER2-mutation.

Conclusions: We established by far the largest PDX biobank with a high engraftment rate for CC that preserves the histopathological and genetic characteristics of patient's biopsy samples, recapitulates patient's response to conventional therapy, and is capable of evaluating the efficacy of novel therapeutic modalities for CC.

Keywords

Adoptive T-cell therapy; Cervical cancer; Chemotherapy; Neratinib; PDX.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-32721
    99.59%, HER2/EGFR Inhibitor