1. Academic Validation
  2. Functional characterization of two human sulphotransferase cDNAs that encode monoamine- and phenol-sulphating forms of phenol sulphotransferase: substrate kinetics, thermal-stability and inhibitor-sensitivity studies

Functional characterization of two human sulphotransferase cDNAs that encode monoamine- and phenol-sulphating forms of phenol sulphotransferase: substrate kinetics, thermal-stability and inhibitor-sensitivity studies

  • Biochem J. 1994 Sep 1;302 ( Pt 2)(Pt 2):497-502. doi: 10.1042/bj3020497.
M E Veronese 1 W Burgess X Zhu M E McManus
Affiliations

Affiliation

  • 1 Department of Clinical Pharmacology, Flinders University of South Australia, Adelaide.
Abstract

The present paper describes the functional characterization of two human aryl sulphotransferase (HAST) cDNAs, HAST1 and HAST3, previously isolated by us from liver and brain, respectively [Zhu, Veronese, Sansom, and McManus (1993) Biochem. Biophys. Res. Commun. 192, 671-676; Zhu, Veronese, Bernard, Sansom and McManus (1993) Biochem. Biophys. Res. Commun. 195, 120-127]. These appear to encode the two major forms of phenol sulphotransferase (PST) characterized in a number of human tissue cytosols, these being the phenolsulphating (P-PST) and monoamine-sulphating (M-PST) forms of phenol sulphotransferase. HAST1 and HAST3 cDNAs were functionally expressed in COS-7 cells and kinetically characterized using the model substrates for P-PST and M-PST, p-nitrophenol and dopamine (3,4-dihydroxyphenethylamine) respectively. COS-expressed HAST1 was shown to be enzymatically active in sulphating p-nitrophenol with high affinity (Km 0.6 microM), whereas dopamine was the preferred substrate for HAST3 (Km 9.7 microM). HAST1 could also sulphate dopamine, as could HAST3 sulphate p-nitrophenol, but the Km for these reactions were at least two orders of magnitude greater than for the preferred substrates. COS-expressed HAST1 and HAST3 displayed inhibition profiles with the ST inhibitor 2,6-dichloro-4-nitrophenol (DCNP), identical with human liver cytosolic P-PST and M-PST activities respectively. Thermal-stability studies with the expressed enzymes showed that HAST1 was considerably more thermostable (TS) than HAST3, which is consistent with P-PST being termed the TS PST and M-PST being termed the thermolabile (TL) PST. Western immunoblot analyses of the expressed PST proteins using an antibody generated to a bacterially expressed rat liver aryl/phenol ST showed that HAST1 and HAST3 migrated as single proteins with different electrophoretic mobilities (32 versus 34 kDa). This is consistent with the differences in electrophoretic mobilities observed for P-PST and M-PST in a variety of tissues reported by other workers. This report on the functional characterization of P-PST and M-PST cDNAs provides important information on the structural as well as functional relationships of human PSTs, which sulphate a vast array of exogenous and endogenous compounds.

Figures