1. Academic Validation
  2. A mechanism for hydroxylation by tyrosine hydroxylase based on partitioning of substituted phenylalanines

A mechanism for hydroxylation by tyrosine hydroxylase based on partitioning of substituted phenylalanines

  • Biochemistry. 1996 Jun 4;35(22):6969-75. doi: 10.1021/bi9606861.
P J Hillas 1 P F Fitzpatrick
Affiliations

Affiliation

  • 1 Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843, USA.
Abstract

The iron-containing Enzyme tyrosine hydroxylase catalyzes the hydroxylation of tyrosine to dihydroxyphenylalanine. A series of 4-X-substituted (X = H, F, Br, Cl, CH3, or CH3O) phenylalanines have been characterized as substrates to gain insight into the mechanism of hydroxylation. Multiple hydroxylated products were formed in most cases. As the size of the substituent at the 4-position increased, the site of hydroxylation switched from the 4- to the 3-position of the aromatic ring. The total amount of product formed with each amino acid showed a very good correlation with the sigma parameter of the substituent, with rho values of -4.3 +/- 0.7 or -5.6 +/- 0.8 when tetrahydrobiopterin or 6-methyltetrahydropterin, respectively, was used as cosubstrate. These values are consistent with a highly electron deficient transition state for hydroxylation. Oxygen addition at the 4-position resulted in either elimination of the substituent to form tyrosine or an NIH shift to form the respective 3-X-tyrosine. The relative amount of the product due to an NIH shift decreased in the order Br > CH3 > Cl >> F approximately CH3O approximately 0. A chemical mechanism for hydroxylation by tyrosine hydroxylase is presented to account for product formation from the various 4-substituted phenylalanines.

Figures
Products