1. Academic Validation
  2. EDF-1, a novel gene product down-regulated in human endothelial cell differentiation

EDF-1, a novel gene product down-regulated in human endothelial cell differentiation

  • J Biol Chem. 1998 Nov 20;273(47):31119-24. doi: 10.1074/jbc.273.47.31119.
I Dragoni 1 M Mariotti G G Consalez M R Soria J A Maier
Affiliations

Affiliation

  • 1 Dipartimento di Scienze e Tecnologie Biomediche-Ospedale San Raffaele, Università di Milano, I-20132 Milano, Italy.
Abstract

Endothelial cell differentiation is a crucial step in angiogenesis. Here we report the identification of EDF-1, a novel gene product that is down-regulated when endothelial cells are induced to differentiate in vitro. The cDNA encoding EDF-1 was isolated by RNA fingerprinting from human endothelial cells exposed to human immunodeficiency virus type 1 Tat, a viral protein known to be angiogenic. The deduced amino acid sequence of EDF-1 encodes a basic intracellular protein of 148 Amino acids that is homologous to MBF1 (multiprotein-bridging factor 1) of the silkworm Bombyx mori and to H7, which is implicated in the early developmental events of Dictyostelium discoideum. Interestingly, human immunodeficiency virus type 1 Tat, which affects endothelial functions, and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate and culture on fibrin gels, which promote endothelial differentiation in vitro, all down-regulate EDF-1 expression both at the RNA and protein levels. In addition, the inhibition of EDF-1 translation by an antisense anti-EDF-1 construct results in the inhibition of endothelial cell growth and in the transition from a nonpolar cobblestone phenotype to a polar fibroblast-like phenotype. These data suggest that EDF-1 may play a role in the regulation of human endothelial cell differentiation.

Figures