1. Academic Validation
  2. beta-arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization, and this implicates multiple interaction sites between beta-arrestin and CXCR4

beta-arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization, and this implicates multiple interaction sites between beta-arrestin and CXCR4

  • J Biol Chem. 2000 Jan 28;275(4):2479-85. doi: 10.1074/jbc.275.4.2479.
Z J Cheng 1 J Zhao Y Sun W Hu Y L Wu B Cen G X Wu G Pei
Affiliations

Affiliation

  • 1 Shanghai Institute of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
Abstract

The Chemokine Receptor CXCR4 has recently been shown to be a co-receptor involved in the entry of human immunodeficiency virus type 1 into target cells. This study shows that coexpression of beta-arrestin with CXCR4 in human embryonic kidney 293 cells attenuated chemokine-stimulated G protein activation and inhibition of cAMP production. Truncation of the C-terminal 34 Amino acids of CXCR4 (CXCR4-T) abolished the effects of beta-arrestin on CXCR4/G protein signaling, indicating the functional interaction of the receptor C terminus with beta-arrestin. On the other hand, receptor internalization and the subsequent activation of extracellular signal-regulated kinases were significantly promoted by coexpression of beta-arrestin with CXCR4, whereas the C-terminal truncation of CXCR4 did not affect this regulation of beta-arrestin, suggesting that beta-arrestin can functionally interact with CXCR4 with or without the C terminus. Moreover, beta(2)V54D, the dominant inhibitory mutant of beta-arrestin 2, exerted no effects on CXCR4/G protein signaling, but strongly influenced receptor internalization and extracellular signal-regulated kinase activation. Further cross-linking experiments demonstrated that beta-arrestin as well as beta(2)V54D could physically contact both CXCR4 and CXCR4-T. Glutathione S-transferase pull-down assay showed that beta-arrestin was able to bind efficiently in vitro to both the third intracellular loop and the 34-amino acid C terminus of CXCR4. Taken together, our data clearly establish that beta-arrestin can effectively regulate different functions of CXCR4 and that this is mediated through its distinct interactions with the C terminus and other regions including the third loop of CXCR4.

Figures